File size: 4,627 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE125860"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE125860"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE125860.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE125860.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE125860.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data
is_gene_available = True  # Affymetrix arrays indicate gene expression data

# 2.1 Data Row Identification
trait_row = 7  # hepatitis b concentration post-vaccination indicates disease status
age_row = 17  # age information
gender_row = 18  # gender information

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    try:
        # Extract value after colon and strip whitespace
        val = x.split(':', 1)[1].strip()
        if val == 'NA':
            return None
        # Convert to float and binarize based on threshold
        val = float(val.replace('<', '').replace('mIU/mL', '').strip())
        return 1 if val >= 10 else 0  # Common threshold for HBV protection
    except:
        return None

def convert_age(x):
    try:
        return int(x.split(':', 1)[1].strip())
    except:
        return None

def convert_gender(x):
    try:
        gender = x.split(':', 1)[1].strip()
        if gender == 'F':
            return 0
        elif gender == 'M':
            return 1
        return None
    except:
        return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_data, 
        trait,
        trait_row,
        convert_trait,
        age_row,
        convert_age,
        gender_row,
        convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the gene identifiers in the data ('AFFX-' prefix suggests Affymetrix probe IDs),
# these are probe IDs that need to be mapped to gene symbols

requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Since gene mapping information is missing in the SOFT file
# Print message and save original probe-level data directly
print("Warning: Gene mapping information is not available in the SOFT file.")
print("Saving probe-level expression data without gene mapping.")

# Save probe-level expression data
gene_data.to_csv(out_gene_data_file)