File size: 8,256 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE152738"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE152738"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE152738.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE152738.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE152738.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# The series title and design mentions gene expression microarray analysis using Affymetrix arrays
is_gene_available = True

# 2.1 Data Availability
# age_stage info is in row 0 
trait_row = 0  # We can infer trait status from age stage
age_row = 0    # Age data is available in age stage
gender_row = None  # Gender data not available

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert age stage to binary trait (0=young, 1=old)"""
    if not isinstance(x, str):
        return None
    x = x.split(": ")[1].lower() if ":" in x else x.lower()
    if "young" in x:
        return 0
    elif "old" in x:
        return 1
    return None

def convert_age(x):
    """Convert age stage to continuous age values"""
    if not isinstance(x, str):
        return None
    x = x.split(": ")[1].lower() if ":" in x else x.lower()
    if "young" in x:
        return 30  # Midpoint of 18-40 range
    elif "old" in x:
        return 50  # Conservative estimate for >40
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)

# 4. Clinical Feature Extraction
selected_clinical_df = geo_select_clinical_features(clinical_data, trait, 
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age)

# Preview and save clinical data
preview_df(selected_clinical_df)
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Identify the mapping columns
# 'ID' in gene_metadata maps to the probe IDs in gene_data
# 'Gene Symbol' in gene_metadata contains the gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')

# 2. Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# 3. Normalize gene symbols using synonym information to standardize format
gene_data = normalize_gene_symbols_in_index(gene_data)
# First verify data validity
if gene_data.empty or selected_clinical_df.empty:
    is_usable = validate_and_save_cohort_info(
        is_final=True, 
        cohort=cohort,
        info_path=json_path,
        is_gene_available=False,
        is_trait_available=False,
        is_biased=None,
        df=None,
        note="Data preprocessing failed due to invalid gene or clinical data."
    )
else:
    # 1. Save gene expression data 
    gene_data.to_csv(out_gene_data_file)

    # 2. Link clinical and genetic data
    selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
    
    # Print data info for debugging
    print("Clinical data shape:", selected_clinical_df.shape)
    print("Gene data shape:", gene_data.shape)
    print("Linked data shape:", linked_data.shape)
    print("\nLinked data preview:")
    print(linked_data.head())

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Evaluate bias in features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save cohort information
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True, 
        is_trait_available=True,
        is_biased=is_biased,
        df=linked_data,
        note="Contains normalized gene expression data and clinical information."
    )

    # 6. Save data if usable 
    if is_usable:
        linked_data.to_csv(out_data_file)
# First validate both the gene and clinical data
if gene_data.empty or gene_data.isnull().all().all():
    print("Gene expression data is invalid")
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=False,
        is_trait_available=False,
        df=None,
        is_biased=None,
        note="Gene expression data preprocessing failed"
    )
elif selected_clinical_df.empty or selected_clinical_df.isnull().all().all():
    print("Clinical data is invalid") 
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=False,
        is_trait_available=False,
        df=None,
        is_biased=None,
        note="Clinical data preprocessing failed"
    )
else:
    # Save normalized gene data
    gene_data.to_csv(out_gene_data_file)
    
    # Link clinical and genetic data
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

    # Print data info for debugging
    print("Clinical data shape:", selected_clinical_df.shape)
    print("Gene data shape:", gene_data.shape) 
    print("Linked data shape:", linked_data.shape)
    print("\nLinked data preview:")
    print(linked_data.head())

    # Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # Evaluate bias in features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # Validate and save cohort information
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_biased,
        df=linked_data,
        note="Contains normalized gene expression data and clinical information."
    )

    # Save linked data if usable
    if is_usable:
        linked_data.to_csv(out_data_file)