File size: 8,256 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hepatitis"
cohort = "GSE152738"
# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE152738"
# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE152738.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE152738.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE152738.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# The series title and design mentions gene expression microarray analysis using Affymetrix arrays
is_gene_available = True
# 2.1 Data Availability
# age_stage info is in row 0
trait_row = 0 # We can infer trait status from age stage
age_row = 0 # Age data is available in age stage
gender_row = None # Gender data not available
# 2.2 Data Type Conversion Functions
def convert_trait(x):
"""Convert age stage to binary trait (0=young, 1=old)"""
if not isinstance(x, str):
return None
x = x.split(": ")[1].lower() if ":" in x else x.lower()
if "young" in x:
return 0
elif "old" in x:
return 1
return None
def convert_age(x):
"""Convert age stage to continuous age values"""
if not isinstance(x, str):
return None
x = x.split(": ")[1].lower() if ":" in x else x.lower()
if "young" in x:
return 30 # Midpoint of 18-40 range
elif "old" in x:
return 50 # Conservative estimate for >40
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)
# 4. Clinical Feature Extraction
selected_clinical_df = geo_select_clinical_features(clinical_data, trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age)
# Preview and save clinical data
preview_df(selected_clinical_df)
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Identify the mapping columns
# 'ID' in gene_metadata maps to the probe IDs in gene_data
# 'Gene Symbol' in gene_metadata contains the gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
# 2. Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# 3. Normalize gene symbols using synonym information to standardize format
gene_data = normalize_gene_symbols_in_index(gene_data)
# First verify data validity
if gene_data.empty or selected_clinical_df.empty:
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=False,
is_biased=None,
df=None,
note="Data preprocessing failed due to invalid gene or clinical data."
)
else:
# 1. Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Print data info for debugging
print("Clinical data shape:", selected_clinical_df.shape)
print("Gene data shape:", gene_data.shape)
print("Linked data shape:", linked_data.shape)
print("\nLinked data preview:")
print(linked_data.head())
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains normalized gene expression data and clinical information."
)
# 6. Save data if usable
if is_usable:
linked_data.to_csv(out_data_file)
# First validate both the gene and clinical data
if gene_data.empty or gene_data.isnull().all().all():
print("Gene expression data is invalid")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=False,
df=None,
is_biased=None,
note="Gene expression data preprocessing failed"
)
elif selected_clinical_df.empty or selected_clinical_df.isnull().all().all():
print("Clinical data is invalid")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=False,
df=None,
is_biased=None,
note="Clinical data preprocessing failed"
)
else:
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Print data info for debugging
print("Clinical data shape:", selected_clinical_df.shape)
print("Gene data shape:", gene_data.shape)
print("Linked data shape:", linked_data.shape)
print("\nLinked data preview:")
print(linked_data.head())
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains normalized gene expression data and clinical information."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |