File size: 6,208 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE45032"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE45032"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE45032.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE45032.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE45032.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and summary, this is a gene expression microarray study
is_gene_available = True

# 2. Data Type Conversion Functions
def convert_trait(value):
    # Binary: 0 for CHC, 1 for HCC 
    if not value or ':' not in value:
        return None
    value = value.split(': ')[1].lower()
    if 'hepatitis' in value or 'chc' in value:
        return 0
    elif 'carcinoma' in value or 'hcc' in value:
        return 1
    return None

def convert_age(value):
    # Continuous
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value):
    # Binary: 0 for female, 1 for male
    if not value or ':' not in value:
        return None
    value = value.split(': ')[1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 2.1 Data Row Identification
trait_row = 0  # cell type field contains trait info
age_row = 3    # age(yrs) field
gender_row = 2 # gender field

# 3. Save Initial Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview_result = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview_result)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at identifiers, which are just numbers starting from 1
# These are not human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract gene mapping - using 'ID' as identifier column and 'GeneName' as gene symbol column
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GeneName')

# Drop control probes based on GeneName being control types
control_names = ['GE_BrightCorner', 'DarkCorner']
mapping_data = mapping_data[~mapping_data['Gene'].isin(control_names)]

# Apply gene mapping to convert probe level data to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview the result
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# 1. Since gene symbol normalization failed, we'll work with probe-level expression data
# Save the probe-level expression data
gene_data.to_csv(out_gene_data_file)

# 2. Load clinical data and link with probe-level expression data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Record cohort information with probe-level data note
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains numerical probe-level expression data (gene symbol normalization was skipped) and clinical data."
)

# 6. Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)