File size: 6,069 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE66843"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE66843"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE66843.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE66843.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE66843.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Looking at the background info, this is cell line data from Huh7.5.1 cells
# Cell line data typically contains gene expression, so set to True
is_gene_available = True

# 2.1 Data Availability

# Trait (HCV infection) data is available in Feature 1
# Values show clear control vs HCV infected groups
trait_row = 1

# Age is not applicable for cell line data
age_row = None 

# Gender is not applicable for cell line data
gender_row = None

# 2.2 Data Type Conversion Functions

def convert_trait(value: str) -> int:
    """Convert infection status to binary
    Mock infection (control) = 0
    HCV infection = 1
    """
    if not isinstance(value, str):
        return None
    value = value.lower()
    if 'mock' in value or 'control' in value:
        return 0
    elif 'hcv' in value:
        return 1
    return None

# Age and gender conversion functions not needed since data not available
convert_age = None
convert_gender = None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview data
    preview = preview_df(selected_clinical)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on biomedical knowledge, the identifiers starting with "ILMN_" are 
# Illumina probe IDs, not human gene symbols. These probe IDs need to be mapped
# to human gene symbols for proper analysis.

requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# 1. Looking at the data:
# - Gene expression data uses identifiers like 'ILMN_1343291'
# - Gene annotation data has 'ID' column with same ILMN_ format identifiers
# - 'Symbol' column contains gene symbols

# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')

# 3. Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview result
print("Shape of gene-level expression data:", gene_data.shape)
print("\nFirst few rows of gene-level data:")
print(gene_data.head())
# Skip normalization since we already have valid gene symbols
gene_data.to_csv(out_gene_data_file)

# Load clinical data from previous steps 
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains gene-level expression data and clinical data."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)