File size: 5,464 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE85550"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE85550"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE85550.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE85550.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE85550.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene expression data availability
# This dataset has liver biopsy samples for expression profiling
# No indicators of miRNA/methylation data, likely contains gene expression data
is_gene_available = True

# 2. Variable availability and data type conversion
# Looking at sample characteristics:
# trait_row = 2 (time_point indicates disease progression in hepatitis fibrosis)
# age_row = None as age data is not recorded 
# gender_row = None as gender data is not recorded

trait_row = 2
age_row = None  
gender_row = None

def convert_trait(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip()
    if value == 'Baseline':
        return 0  # Early/mild fibrosis
    elif value == 'Follow-up':
        return 1  # Progressed fibrosis
    return None

def convert_age(x):
    # Not needed since age data not available
    return None

def convert_gender(x):
    # Not needed since gender data not available
    return None

# 3. Save metadata about dataset usability
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_data, 
                                              trait=trait,
                                              trait_row=trait_row,
                                              convert_trait=convert_trait,
                                              age_row=age_row,
                                              convert_age=convert_age,
                                              gender_row=gender_row,
                                              convert_gender=convert_gender)

# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on examination of the gene identifiers shown in the data, they appear to be human gene symbols (e.g. AARS, ABLIM1, ACOT2, etc.)
# These are official HGNC gene symbols, so no mapping is needed
requires_gene_mapping = False
# Skip normalization since data already uses standard symbols
gene_data.to_csv(out_gene_data_file)

# Load clinical data from previous steps
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features  
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=is_biased,
    df=linked_data,
    note="Contains standard gene symbol expression data and clinical data."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)