File size: 4,083 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hepatitis"
cohort = "GSE97475"
# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE97475"
# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE97475.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE97475.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE97475.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title, this seems to be a study involving immune profiling with RNA samples
# The cell types listed include RNA samples, so gene expression data should be available
is_gene_available = True
# 2. Clinical Feature Information
# 2.1 Data Availability
# Based on sample characteristics:
# - age data is available in subjects.demographics.age (row 81)
# - gender data is in subjects.demographics.sex (row 118)
# - no explicit hepatitis data/values found
age_row = 81
gender_row = 118
trait_row = None # No explicit hepatitis status found
# 2.2 Data Type Conversion Functions
def convert_age(value):
try:
# Extract numeric value after colon
age = float(value.split(': ')[1])
return age
except (ValueError, IndexError):
return None
def convert_gender(value):
try:
gender = value.split(': ')[1].strip().lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
except (ValueError, IndexError):
return None
def convert_trait(value):
# Not used since trait data not available
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # No hepatitis status data found
)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = False
# Since trait data is unavailable (trait_row=None), we cannot use this dataset
# Simply record cohort information indicating unusable due to missing trait data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note="Dataset contains gene expression data but lacks hepatitis trait information."
) |