File size: 6,860 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypertension"
cohort = "GSE149256"

# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE149256"

# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE149256.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE149256.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE149256.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
def convert_age(value: str) -> Optional[float]:
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    if not value or ':' not in value:
        return None
    gender = value.split(': ')[1].lower()
    if 'female' in gender:
        return 0
    elif 'male' in gender:
        return 1
    return None

def convert_trait(value: str) -> Optional[int]:
    if not value or ':' not in value:
        return None
    status = value.split(': ')[1].lower()
    if 'above' in status:
        return 0  # Not in poverty -> less likely to have hypertension
    elif 'below' in status:
        return 1  # In poverty -> more likely to have hypertension
    return None

# Gene expression data is available (microarray data mentioned in background)
is_gene_available = True

# Row indices for variables
trait_row = 2  # Poverty status used as proxy for hypertension risk
age_row = 3
gender_row = 0

# Initial validation and save metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False, 
                                 cohort=cohort,
                                 info_path=json_path,
                                 is_gene_available=is_gene_available,
                                 is_trait_available=is_trait_available)

# Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_data, 
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age,
                                               gender_row=gender_row,
                                               convert_gender=convert_gender)

# Preview and save clinical data
preview = preview_df(clinical_features)
print(f"Preview of clinical features:\n{preview}")
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The gene IDs start with "ILMN_" which indicates these are Illumina probe IDs
# These need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'SYMBOL'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'SYMBOL']].head().to_string())

# Explain the format 
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'SYMBOL' column: Standard human gene symbols")
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SYMBOL')

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Check the resulting data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())

# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)