File size: 6,913 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypertension"
cohort = "GSE181339"
# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE181339"
# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE181339.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE181339.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE181339.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Background shows it's a microarray gene expression study on PBMCs
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # 'group' field contains hypertension info for MONW subjects
gender_row = 0 # 'gender' field
age_row = 2 # 'age' field
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Based on background, MONW group has hypertension
if not x or ':' not in x:
return None
value = x.split(':')[1].strip()
if value == 'MONW':
return 1 # Has hypertension
elif value in ['NW', 'OW/OB']:
return 0 # No hypertension
return None
def convert_age(x):
if not x or ':' not in x:
return None
try:
value = x.split(':')[1].strip()
return float(value) # Convert to continuous numeric value
except:
return None
def convert_gender(x):
if not x or ':' not in x:
return None
value = x.split(':')[1].strip().lower()
if value == 'woman':
return 0
elif value == 'man':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected features
preview = preview_df(selected_clinical)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene identifiers appear to be probe IDs (numeric format).
# They are not human gene symbols and need to be mapped.
# This is likely from an Illumina or Affymetrix microarray platform
# requiring mapping from probe IDs to gene symbols.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
# Explain the format
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'GENE_SYMBOL' column: Standard human gene symbols")
# Get gene mapping from annotation data
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols using synonym dictionary
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape and preview to verify mapping results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows after mapping:")
print(gene_data.head())
# Save mapped gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |