File size: 3,654 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypertension"
cohort = "GSE256539"
# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE256539"
# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE256539.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE256539.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE256539.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # According to the background info "whole genome sequencing" is performed
# 2. Variable Availability and Row IDs
trait_row = None # From background info, the trait (Hypertension) status is constant - all are IPAH patients
age_row = None # Age info not available
gender_row = None # Gender info not available
# Define conversion functions
def convert_trait(val: str) -> int:
# All subjects have IPAH so should be 1
return 1
def convert_age(val: str) -> float:
return None
def convert_gender(val: str) -> int:
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# All identifiers shown in the data appear to be valid human gene symbols.
# For example: A2M, A4GALT, AAAS, AACS, AAGAB etc. are standard HGNC gene symbols.
# These symbols are the official gene nomenclature for human genes, so no mapping is needed.
requires_gene_mapping = False
# 1. Normalize and save gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Record that dataset lacks trait data
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
note="All samples are hypertension patients, so trait data is not suitable for analysis."
) |