File size: 12,159 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypertension"
cohort = "GSE74144"
# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE74144"
# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE74144.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE74144.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE74144.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series title and overall design mentioning transcriptomic analysis
# and gene expression profiling of leukocytes, this dataset contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Hypertension) can be determined from Feature 0 status
trait_row = 0
# Age and gender are not explicitly mentioned in characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert hypertension status to binary"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if 'hypertensive patient' in value:
return 1
elif 'control' in value:
return 0
return None
# No age conversion function needed
convert_age = None
# No gender conversion function needed
convert_gender = None
# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Get file paths
import gzip
# First inspect raw file content to find where platform annotation begins
platform_start = False
data_preview = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if line.startswith('^PLATFORM'):
platform_start = True
continue
if platform_start and len(data_preview) < 20:
data_preview.append(line.strip())
print("Platform annotation preview:")
print("\n".join(data_preview))
print("\n" + "="*80 + "\n")
# Extract gene annotation with focus on platform section
prefixes = ['!Platform_table_begin'] # Changed to target platform table
gene_annotation = get_gene_annotation(soft_file, prefixes)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns and first few rows:")
print(preview_df(gene_annotation))
# Additional inspection of columns that might contain probe-gene mapping
columns = gene_annotation.columns.tolist()
print("\nAll columns:", columns)
for col in columns:
non_null = gene_annotation[col].notna().sum()
if non_null > 0:
print(f"\nColumn '{col}' has {non_null} non-null values")
print("Sample values:", gene_annotation[col].dropna().head().tolist())
# Extract gene annotation data targeting the platform table
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
content = f.read()
table_start = content.find('!Platform_table_begin')
table_end = content.find('!Platform_table_end')
table_content = content[table_start:table_end]
# Convert table content to DataFrame
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1)
# Print column info to verify extraction
print("Column names in gene annotation:")
print(gene_annotation.columns.tolist())
print("\nPreview of gene annotation data:")
print(gene_annotation.head())
# Use ID and GENE_SYMBOL columns for mapping
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview the mapped gene expression data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation targeting the platform table
with gzip.open(soft_file, 'rt') as f:
content = f.read()
# Find platform section start
platform_start = content.find('^PLATFORM')
# Find table markers within platform section
table_start = content.find('!Platform_table_begin', platform_start)
table_end = content.find('!Platform_table_end', table_start)
if table_start != -1 and table_end != -1:
# Extract content between markers and skip the header line
table_content = content[content.find('\n', table_start):table_end]
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t')
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns and first few rows:")
print(gene_annotation.head())
print("\nColumn names:")
print(gene_annotation.columns.tolist())
# Preview non-empty values in relevant columns
for col in gene_annotation.columns:
non_null = gene_annotation[col].notna().sum()
if non_null > 0:
print(f"\nColumn '{col}' has {non_null} non-null values")
print("Sample values:", gene_annotation[col].dropna().head().tolist())
else:
print("Platform table markers not found in file")
# 1. Extract gene annotation from SOFT file
platform_section = ''
table_content = ''
inside_platform = False
inside_table = False
with gzip.open(soft_file, 'rt') as f:
for line in f:
if line.startswith('^PLATFORM'):
inside_platform = True
elif line.startswith('!Platform_table_begin') and inside_platform:
inside_table = True
continue
elif line.startswith('!Platform_table_end'):
break
elif inside_table:
table_content += line
elif inside_platform:
platform_section += line
# Parse table content into DataFrame
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t')
# Create mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols using NCBI database
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Load clinical data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression study comparing hypertensive patients with/without left ventricular remodeling"
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
# Print non-null counts for each column
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print a sample of rows that have non-null gene symbols
print("\nSample rows with non-null gene symbols:")
non_null_genes = gene_annotation[gene_annotation['GENE_SYMBOL'].notna()]
print(preview_df(non_null_genes))
# Count unique IDs and gene symbols
print("\nNumber of unique values:")
print("Unique IDs:", gene_annotation['ID'].nunique())
if 'GENE_SYMBOL' in gene_annotation.columns:
print("Unique gene symbols:", gene_annotation['GENE_SYMBOL'].dropna().nunique())
# Based on the gene identifiers preview, we need ID and GENE_SYMBOL columns
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview the mapped gene expression data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |