File size: 12,159 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypertension"
cohort = "GSE74144"

# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE74144"

# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE74144.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE74144.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE74144.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series title and overall design mentioning transcriptomic analysis
# and gene expression profiling of leukocytes, this dataset contains gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion 
# 2.1 Data Availability

# Trait (Hypertension) can be determined from Feature 0 status
trait_row = 0

# Age and gender are not explicitly mentioned in characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert hypertension status to binary"""
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1].lower()
    if 'hypertensive patient' in value:
        return 1 
    elif 'control' in value:
        return 0
    return None

# No age conversion function needed
convert_age = None

# No gender conversion function needed  
convert_gender = None

# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction 
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Get file paths
import gzip 

# First inspect raw file content to find where platform annotation begins
platform_start = False
data_preview = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    for line in f:
        if line.startswith('^PLATFORM'):
            platform_start = True
            continue
        if platform_start and len(data_preview) < 20:
            data_preview.append(line.strip())

print("Platform annotation preview:")
print("\n".join(data_preview))
print("\n" + "="*80 + "\n")

# Extract gene annotation with focus on platform section
prefixes = ['!Platform_table_begin']  # Changed to target platform table
gene_annotation = get_gene_annotation(soft_file, prefixes)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns and first few rows:")
print(preview_df(gene_annotation))

# Additional inspection of columns that might contain probe-gene mapping
columns = gene_annotation.columns.tolist()
print("\nAll columns:", columns)
for col in columns:
    non_null = gene_annotation[col].notna().sum()
    if non_null > 0:
        print(f"\nColumn '{col}' has {non_null} non-null values")
        print("Sample values:", gene_annotation[col].dropna().head().tolist())
# Extract gene annotation data targeting the platform table 
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    content = f.read()
    table_start = content.find('!Platform_table_begin')
    table_end = content.find('!Platform_table_end')
    table_content = content[table_start:table_end]

# Convert table content to DataFrame
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1)

# Print column info to verify extraction
print("Column names in gene annotation:")
print(gene_annotation.columns.tolist())
print("\nPreview of gene annotation data:")
print(gene_annotation.head())

# Use ID and GENE_SYMBOL columns for mapping
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# Apply the mapping to convert probe-level data to gene-level data  
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview the mapped gene expression data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation targeting the platform table
with gzip.open(soft_file, 'rt') as f:
    content = f.read()
    # Find platform section start
    platform_start = content.find('^PLATFORM')
    # Find table markers within platform section
    table_start = content.find('!Platform_table_begin', platform_start)
    table_end = content.find('!Platform_table_end', table_start)
    
    if table_start != -1 and table_end != -1:
        # Extract content between markers and skip the header line
        table_content = content[content.find('\n', table_start):table_end]
        gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t')
        
        print("Gene annotation shape:", gene_annotation.shape)
        print("\nGene annotation columns and first few rows:")
        print(gene_annotation.head())
        print("\nColumn names:")
        print(gene_annotation.columns.tolist())
        
        # Preview non-empty values in relevant columns
        for col in gene_annotation.columns:
            non_null = gene_annotation[col].notna().sum()
            if non_null > 0:
                print(f"\nColumn '{col}' has {non_null} non-null values")
                print("Sample values:", gene_annotation[col].dropna().head().tolist())
    else:
        print("Platform table markers not found in file")
# 1. Extract gene annotation from SOFT file
platform_section = ''
table_content = ''
inside_platform = False
inside_table = False

with gzip.open(soft_file, 'rt') as f:
    for line in f:
        if line.startswith('^PLATFORM'):
            inside_platform = True
        elif line.startswith('!Platform_table_begin') and inside_platform:
            inside_table = True
            continue
        elif line.startswith('!Platform_table_end'):
            break
        elif inside_table:
            table_content += line
        elif inside_platform:
            platform_section += line

# Parse table content into DataFrame
gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t')

# Create mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# Apply mapping to convert probe data to gene data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Normalize gene symbols using NCBI database
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Load clinical data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression study comparing hypertensive patients with/without left ventricular remodeling"
)

# Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

# Print non-null counts for each column
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print a sample of rows that have non-null gene symbols
print("\nSample rows with non-null gene symbols:")
non_null_genes = gene_annotation[gene_annotation['GENE_SYMBOL'].notna()]
print(preview_df(non_null_genes))

# Count unique IDs and gene symbols
print("\nNumber of unique values:")
print("Unique IDs:", gene_annotation['ID'].nunique())
if 'GENE_SYMBOL' in gene_annotation.columns:
    print("Unique gene symbols:", gene_annotation['GENE_SYMBOL'].dropna().nunique())
# Based on the gene identifiers preview, we need ID and GENE_SYMBOL columns
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview the mapped gene expression data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)