File size: 5,885 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypertension"
cohort = "GSE77627"

# Input paths
in_trait_dir = "../DATA/GEO/Hypertension"
in_cohort_dir = "../DATA/GEO/Hypertension/GSE77627"

# Output paths
out_data_file = "./output/preprocess/3/Hypertension/GSE77627.csv"
out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE77627.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE77627.csv"
json_path = "./output/preprocess/3/Hypertension/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - this is a transcriptomic profiling study of liver tissue using Illumina arrays
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Hypertension) data available in feature 0 ('liver group')
trait_row = 0  
# Age data not available
age_row = None
# Gender data not available 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert liver group to binary hypertension status"""
    if not isinstance(value, str):
        return None
    # Extract value after colon if present
    if ':' in value:
        value = value.split(':')[1].strip()
    # Both INCPH and LC groups have portal hypertension
    if 'INCPH' in value or 'LC' in value:
        return 1
    elif 'HNL' in value:  # Normal controls
        return 0
    return None

def convert_age(value):
    return None

def convert_gender(value): 
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row, 
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    print(preview_df(clinical_df))
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers start with "ILMN_" which indicates they are Illumina probe IDs
# These need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping)

# Normalize gene symbols to standardized names
gene_data = normalize_gene_symbols_in_index(gene_data)

print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)