File size: 4,686 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypertrophic_Cardiomyopathy"
cohort = "GSE36961"

# Input paths
in_trait_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy"
in_cohort_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy/GSE36961"

# Output paths
out_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/GSE36961.csv"
out_gene_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv"
out_clinical_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/clinical_data/GSE36961.csv"
json_path = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Series title and summary indicate this is transcriptome profiling data
is_gene_available = True

# 2.1 Data Availability
# Trait is in row 3, gender in row 0, age in row 1
trait_row = 3  # disease state / sample type shows HCM vs control
gender_row = 0  # Sex field
age_row = 1   # age (yrs) field

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary (1=case, 0=control)"""
    if pd.isna(value):
        return None
    value = value.split(": ")[-1].lower()
    if "hypertrophic cardiomyopathy" in value or "hcm" in value or "case" in value:
        return 1
    elif "control" in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age value to continuous numeric"""
    if pd.isna(value):
        return None
    try:
        return float(value.split(": ")[-1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0=female, 1=male)"""
    if pd.isna(value):
        return None
    value = value.split(": ")[-1].lower()
    if value == "female":
        return 0
    elif value == "male":
        return 1
    return None

# 3. Save Metadata 
# trait_row is not None, so trait data is available
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                              is_gene_available=is_gene_available, 
                              is_trait_available=is_trait_available)

# 4. Extract Clinical Features
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the clinical data
preview_result = preview_df(selected_clinical)

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = False
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data comparing cardiac tissue from patients with hypertrophic cardiomyopathy (HCM) versus control donor cardiac tissues."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)