File size: 4,801 Bytes
ba45cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypothyroidism"
cohort = "GSE32445"
# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE32445"
# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE32445.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE32445.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE32445.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# The series title and description suggest this is a study involving gene regulation,
# so it's likely to have gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait: Not directly available in characteristics - cannot be inferred from strain alone
trait_row = None
# Age: Available in row 2
age_row = 2
# Gender: Available in row 1
gender_row = 1
# 2.2 Data Type Conversion
# Trait converter not needed since trait data not available
def convert_trait(x):
return None
# Age converter - continuous
def convert_age(x):
try:
# Extract value after colon and remove 'months'/'years'
value = x.split(':')[1].strip()
value = value.lower().replace('months', '').replace('years', '').strip()
return float(value)
except:
return None
# Gender converter - binary (female=0, male=1)
def convert_gender(x):
try:
value = x.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
except:
return None
# 3. Save Metadata
# Initial filtering - trait data not available so dataset will be filtered out
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs are Illumina probe IDs (starting with 'ILMN_') rather than human gene symbols
# These need to be mapped to gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['Gene Symbol', 'Gene Title']:
print(f"{col}: {gene_metadata[col].notna().sum()}")
# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['Gene Symbol'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# Extract gene mapping information from gene annotation data
# Split multiple gene symbols and expand them
mapping_data = gene_metadata.loc[:, ['ID', 'Gene Symbol']]
mapping_data = mapping_data.dropna()
# Rename column to match expected name in apply_gene_mapping function
mapping_data = mapping_data.rename(columns={'Gene Symbol': 'Gene'})
# Apply the mapping to get gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the results
print("\nNumber of genes after mapping:", len(gene_data))
print("\nFirst few gene symbols:", gene_data.index[:10].tolist())
# Create an empty DataFrame to represent unusable data
empty_df = pd.DataFrame()
# Record that this dataset is unusable
note = "Dataset lacks trait information and gene mapping failed to produce any valid gene expression data."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Set to True to indicate the data is unusable
df=empty_df, # Provide empty DataFrame instead of None
note=note
) |