File size: 4,801 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypothyroidism"
cohort = "GSE32445"

# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE32445"

# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE32445.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE32445.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE32445.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability 
# The series title and description suggest this is a study involving gene regulation,
# so it's likely to have gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# 2.1 Data Availability
# Trait: Not directly available in characteristics - cannot be inferred from strain alone
trait_row = None

# Age: Available in row 2
age_row = 2

# Gender: Available in row 1
gender_row = 1

# 2.2 Data Type Conversion
# Trait converter not needed since trait data not available
def convert_trait(x):
    return None

# Age converter - continuous
def convert_age(x):
    try:
        # Extract value after colon and remove 'months'/'years'
        value = x.split(':')[1].strip()
        value = value.lower().replace('months', '').replace('years', '').strip()
        return float(value)
    except:
        return None

# Gender converter - binary (female=0, male=1)
def convert_gender(x):
    try:
        value = x.split(':')[1].strip().lower()
        if 'female' in value:
            return 0
        elif 'male' in value:
            return 1
        return None
    except:
        return None

# 3. Save Metadata
# Initial filtering - trait data not available so dataset will be filtered out
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs are Illumina probe IDs (starting with 'ILMN_') rather than human gene symbols
# These need to be mapped to gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics
print("\nData shape:", gene_metadata.shape)

# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['Gene Symbol', 'Gene Title']:
    print(f"{col}: {gene_metadata[col].notna().sum()}")

# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['Gene Symbol'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# Extract gene mapping information from gene annotation data
# Split multiple gene symbols and expand them
mapping_data = gene_metadata.loc[:, ['ID', 'Gene Symbol']]
mapping_data = mapping_data.dropna()
# Rename column to match expected name in apply_gene_mapping function
mapping_data = mapping_data.rename(columns={'Gene Symbol': 'Gene'})

# Apply the mapping to get gene-level expression data  
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the results
print("\nNumber of genes after mapping:", len(gene_data))
print("\nFirst few gene symbols:", gene_data.index[:10].tolist())
# Create an empty DataFrame to represent unusable data
empty_df = pd.DataFrame()

# Record that this dataset is unusable 
note = "Dataset lacks trait information and gene mapping failed to produce any valid gene expression data."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # Set to True to indicate the data is unusable
    df=empty_df,     # Provide empty DataFrame instead of None
    note=note
)