File size: 5,568 Bytes
ba45cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypothyroidism"
cohort = "GSE75678"
# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75678"
# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE75678.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE75678.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE75678.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Based on series title and summary indicating gene expression data
# 2. Variable Availability and Data Type Conversion
# Hypothyroidism data is in row 21 (personal pathological history)
trait_row = 21
age_row = 19 # Age at diagnosis
gender_row = 1 # Gender data is in row 1
def convert_trait(x):
if pd.isna(x):
return None
val = x.split(': ')[1] if ': ' in x else x
if 'Hypothyroidism' in val:
return 1
return 0
def convert_age(x):
if pd.isna(x):
return None
val = x.split(': ')[1] if ': ' in x else x
try:
return float(val)
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
val = x.split(': ')[1] if ': ' in x else x
if val.lower() == 'female':
return 0
elif val.lower() == 'male':
return 1
return None
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print(preview_df(selected_clinical))
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# Looking at the row IDs, they appear to be simple numeric indices rather than gene symbols
# This indicates we need to map these identifiers to actual gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['GENE', 'GENE_SYMBOL', 'GENE_NAME']:
print(f"{col}: {gene_metadata[col].notna().sum()}")
# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['GENE_SYMBOL'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# Extract mapping between numeric IDs and gene symbols from annotation data
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the gene data shape
print("Gene expression data shape:", gene_data.shape)
# Preview first few gene symbols and samples
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
print("\nFirst few samples:", gene_data.columns[:5].tolist())
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from breast cancer patients, with clinical annotations including hypothyroidism status."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |