File size: 5,122 Bytes
ba45cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hypothyroidism"
cohort = "GSE75685"
# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75685"
# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE75685.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE75685.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE75685.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability check
# Study description suggests this is a breast cancer study with tumor samples
# There is RNA concentration and quality data (RQI Experion)
is_gene_available = True
# 2.1 Data row identification
trait_row = 21 # personal pathological history has 'Hypothyroidism' data
age_row = 19 # 'age at diagnosis'
gender_row = 1 # gender information
# 2.2 Data type conversion functions
def convert_trait(value):
if pd.isna(value):
return None
value = value.split(': ')[-1]
return 1 if value == 'Hypothyroidism' else 0
def convert_age(value):
if pd.isna(value):
return None
try:
age = int(value.split(': ')[-1])
return age
except:
return None
def convert_gender(value):
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save metadata about dataset usability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical feature extraction
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs are numerical indices, not gene symbols or other identifiers
# Therefore, gene mapping will be required to convert these to meaningful gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene ID and gene symbol columns from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nPreview of first few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from breast cancer patients, with clinical annotations including hypothyroidism status."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |