File size: 5,122 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hypothyroidism"
cohort = "GSE75685"

# Input paths
in_trait_dir = "../DATA/GEO/Hypothyroidism"
in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75685"

# Output paths
out_data_file = "./output/preprocess/3/Hypothyroidism/GSE75685.csv"
out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE75685.csv"
out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE75685.csv"
json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability check
# Study description suggests this is a breast cancer study with tumor samples
# There is RNA concentration and quality data (RQI Experion)
is_gene_available = True

# 2.1 Data row identification
trait_row = 21  # personal pathological history has 'Hypothyroidism' data
age_row = 19  # 'age at diagnosis'
gender_row = 1  # gender information

# 2.2 Data type conversion functions
def convert_trait(value):
    if pd.isna(value):
        return None
    value = value.split(': ')[-1]
    return 1 if value == 'Hypothyroidism' else 0

def convert_age(value):
    if pd.isna(value):
        return None
    try:
        age = int(value.split(': ')[-1])
        return age
    except:
        return None

def convert_gender(value):
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save metadata about dataset usability
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical feature extraction
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview and save clinical features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs are numerical indices, not gene symbols or other identifiers
# Therefore, gene mapping will be required to convert these to meaningful gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene ID and gene symbol columns from annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("\nPreview of first few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# Get clinical features
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row, 
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from breast cancer patients, with clinical annotations including hypothyroidism status."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)