File size: 5,422 Bytes
a0747da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_cirrhosis"
cohort = "GSE185529"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_cirrhosis"
in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE185529"
# Output paths
out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE185529.csv"
out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE185529.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE185529.csv"
json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# First examine SOFT file contents to identify subseries
with gzip.open(soft_file_path, 'rt') as f:
soft_content = f.read()
# Look for subseries IDs
subseries_match = re.search(r'!Series_relation = SuperSeries of: (GSE\d+)', soft_content)
if subseries_match:
subseries_id = subseries_match.group(1)
subseries_files = [f for f in os.listdir(in_cohort_dir) if subseries_id in f]
if subseries_files:
subseries_soft = [f for f in subseries_files if 'soft' in f.lower()][0]
subseries_matrix = [f for f in subseries_files if 'matrix' in f.lower()][0]
soft_file_path = os.path.join(in_cohort_dir, subseries_soft)
matrix_file_path = os.path.join(in_cohort_dir, subseries_matrix)
# Extract background info and clinical data from the appropriate files
background_info, clinical_data = get_background_and_clinical_data(soft_file_path)
if len(clinical_data.columns) <= 2: # If SOFT file didn't yield enough info, try matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Based on series title which implies gene expression study
# 2.1 Data Availability
trait_row = None # No disease/control info in characteristics
age_row = None # No age info in characteristics
gender_row = None # No gender info in characteristics
# 2.2 Data Type Conversion
# Only define convert_trait since other data not available
def convert_trait(x):
if x is None:
return None
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
# Return None since we don't have trait data
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # trait_row is None
)
# 4. Skip clinical feature extraction since trait_row is None
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# Based on the gene IDs shown ('2824546_st', '2824549_st', etc.), these are
# not standard human gene symbols but rather probe identifiers from an Affymetrix microarray platform.
# They need to be mapped to proper gene symbols for downstream analysis.
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# 2. Extract mapping dataframe with probe IDs and gene symbols
mapping_data = gene_annotation[['probeset_id', 'gene_assignment']].copy()
mapping_data = mapping_data.rename(columns={'probeset_id': 'ID', 'gene_assignment': 'Gene'})
mapping_data = mapping_data.astype({'ID': 'str'})
# Parse the gene_assignment field to extract valid gene symbols
mapping_data['Gene'] = mapping_data['Gene'].apply(lambda x: re.search(r'//\s*(\w+)\s*//', str(x)).group(1) if pd.notnull(x) and '//' in str(x) else None)
mapping_data = mapping_data.dropna()
# 3. Convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview transformed data
print("\nFirst few gene identifiers after mapping:")
print(gene_data.index[:20])
# 2. Extract mapping dataframe with probe IDs and gene symbols
mapping_data = gene_annotation[['ID', 'gene_assignment']].copy()
mapping_data['ID'] = mapping_data['ID'].astype(str) + '_st' # Add '_st' suffix to match expression data format
def extract_gene(text):
if pd.isna(text) or '//' not in str(text):
return None
matches = re.findall(r'//\s*(\w+)\s*//', str(text))
if matches:
# Convert mouse gene symbols to human by making uppercase
return matches[0].upper()
return None
mapping_data['Gene'] = mapping_data['gene_assignment'].apply(extract_gene)
mapping_data = mapping_data[['ID', 'Gene']].dropna()
# 3. Convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols using NCBI database info
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview transformed data
print("\nFirst few gene identifiers after mapping:")
print(gene_data.index[:20]) |