File size: 3,829 Bytes
a0747da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_cirrhosis"
cohort = "GSE85550"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_cirrhosis"
in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE85550"
# Output paths
out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE85550.csv"
out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE85550.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE85550.csv"
json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data
is_gene_available = True # Based on study title, this is a molecular signature study likely containing gene expression data
# 2.1 Data Availability
trait_row = 2 # Time point can indicate disease progression state
age_row = None # Age information not available
gender_row = None # Gender information not available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if value is None:
return None
value = value.split(': ')[-1].strip()
return 1 if value == 'Follow-up' else 0 # Follow-up represents more advanced disease state
def convert_age(value):
# Not needed since age data unavailable
return None
def convert_gender(value):
# Not needed since gender data unavailable
return None
# 3. Save Initial Validation Results
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True # trait_row is available
)
# 4. Clinical Feature Extraction
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview_df(clinical_df)
clinical_df.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These appear to be standard human gene symbols (e.g. AARS, ABLIM1, ACOT2 etc.)
# No mapping needed as they are already in the correct format
requires_gene_mapping = False
# 1. Normalize gene symbols and save gene data
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge if features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Save cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |