File size: 4,689 Bytes
a0747da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Longevity"
cohort = "GSE44147"

# Input paths
in_trait_dir = "../DATA/GEO/Longevity"
in_cohort_dir = "../DATA/GEO/Longevity/GSE44147"

# Output paths
out_data_file = "./output/preprocess/3/Longevity/GSE44147.csv"
out_gene_data_file = "./output/preprocess/3/Longevity/gene_data/GSE44147.csv"
out_clinical_data_file = "./output/preprocess/3/Longevity/clinical_data/GSE44147.csv"
json_path = "./output/preprocess/3/Longevity/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# This dataset uses Affymetrix Mouse Gene 1.0 ST Arrays for gene expression profiling
is_gene_available = True

# 2.1 Data Availability
# Trait (long-lived) cannot be determined since all samples are C57BL/6 mice
trait_row = None

# Age is available in row 2 with different age values
age_row = 2

# Gender information is not available
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    return None

def convert_age(x):
    # Extract numeric value
    value = x.split(': ')[1].split(' ')[0]
    try:
        return float(value)  # Convert to days as continuous variable
    except:
        return None
        
def convert_gender(x):
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Skip Clinical Feature Extraction since trait_row is None
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These appear to be probe IDs from an array platform, not standard gene symbols
# They are numerical identifiers that will need mapping to gene symbols
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# 1&2. Extract probe-to-gene mapping columns and create mapping dataframe
# 'ID' column matches probe IDs in expression data, and 'gene_assignment' has gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')

# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview results
print("\nFirst few rows and columns of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2-4. Skip linking and processing since no trait data available 

# 5. Final validation
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=None,
    df=None,
    note="Mouse gene expression data from different ages, not suitable for studying human traits."
)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2-4. Skip clinical data processing since trait data is not available
# Create minimal DataFrame since dataset is not usable without trait data
minimal_df = pd.DataFrame()

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # No trait data means dataset is biased/unusable
    df=minimal_df,
    note="Mouse gene expression data measuring age effects. Not suitable for studying human traits."
)