File size: 5,718 Bytes
a0747da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Longevity"
cohort = "GSE48264"
# Input paths
in_trait_dir = "../DATA/GEO/Longevity"
in_cohort_dir = "../DATA/GEO/Longevity/GSE48264"
# Output paths
out_data_file = "./output/preprocess/3/Longevity/GSE48264.csv"
out_gene_data_file = "./output/preprocess/3/Longevity/gene_data/GSE48264.csv"
out_clinical_data_file = "./output/preprocess/3/Longevity/clinical_data/GSE48264.csv"
json_path = "./output/preprocess/3/Longevity/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Affymetrix gene-chips mentioned in background info
# 2. Variable Availability and Row Identification
trait_row = 3 # Survival status recorded in row 3
age_row = None # Age is constant at 70 years for all subjects
gender_row = None # Gender data not available
# Define conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert survival status to binary (0=alive, 1=deceased)"""
if not value or ":" not in value:
return None
status = value.split(":")[1].strip()
if status == "Death":
return 1
elif status == "None": # Still alive
return 0
elif status == "Hosp": # Hospitalized but not deceased
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Not used since age is constant"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Not used since gender data unavailable"""
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These numbers appear to be probe IDs, not standard human gene symbols
# Human gene symbols typically follow patterns like BRCA1, TP53, IL6, etc.
# This data seems to use numeric probe identifiers that will need to be mapped to gene symbols
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# 1. The 'ID' column in gene annotation matches probe IDs in gene expression data
# The 'gene_assignment' contains gene symbol information
# 2. Extract mapping between probe IDs and gene symbols
def extract_first_gene_symbol(text: str) -> str:
"""Extract first gene symbol from gene_assignment string"""
if text == '---' or pd.isna(text):
return None
# The format is typically: "RefSeq // GENE_SYMBOL // description"
# First split by '//' and take second item which contains gene symbol
parts = text.split('//')
if len(parts) >= 2:
return parts[1].strip()
return None
mapping_df = get_gene_mapping(
annotation=gene_annotation,
prob_col='ID',
gene_col='gene_assignment'
)
mapping_df['Gene'] = mapping_df['Gene'].apply(extract_first_gene_symbol)
mapping_df = mapping_df.dropna()
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview results
print("\nFirst few rows and columns of gene expression data:")
print(gene_data.iloc[:5, :5])
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
selected_clinical_df = selected_clinical_df.rename(index={0: 'Longevity'})
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, 'Longevity')
# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Longevity')
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="All subjects are male according to series summary. Age information not available."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |