File size: 5,523 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE107850"

# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE107850"

# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE107850.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE107850.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE107850.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background information mentioning "gene expression profiling", this dataset contains gene expression data
is_gene_available = True

# 2.1 Data Availability 
# trait_row: key 8 contains PFS event status (binary outcome for LGG progression)
trait_row = 8

# age_row: key 1 contains age data
age_row = 1

# gender_row: key 0 contains gender data
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not isinstance(x, str):
        return None
    x = x.split(": ")[-1].strip()
    # Convert PFS event to binary (Yes=1, No=0)
    if x == "Yes":
        return 1
    elif x == "No": 
        return 0
    return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    x = x.split(": ")[-1].strip()
    try:
        return float(x)
    except:
        return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    x = x.split(": ")[-1].strip()
    # Convert gender to binary (Female=0, Male=1)
    if x == "Female":
        return 0
    elif x == "Male":
        return 1
    return None

# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# 4. Extract clinical features if trait data is available
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of extracted clinical features:")
    print(preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# The identifiers in format "ILMN_XXXXXXX" are Illumina probe IDs
# These need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))

# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. Identify mapping columns
# 'ID' in gene annotation contains ILMN_* identifiers matching gene expression data
# 'Symbol' contains gene symbols to map to
probe_col = 'ID'
gene_col = 'Symbol'

# 2. Get mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)

# 3. Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)