File size: 5,523 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE107850"
# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE107850"
# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE107850.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE107850.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE107850.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background information mentioning "gene expression profiling", this dataset contains gene expression data
is_gene_available = True
# 2.1 Data Availability
# trait_row: key 8 contains PFS event status (binary outcome for LGG progression)
trait_row = 8
# age_row: key 1 contains age data
age_row = 1
# gender_row: key 0 contains gender data
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
x = x.split(": ")[-1].strip()
# Convert PFS event to binary (Yes=1, No=0)
if x == "Yes":
return 1
elif x == "No":
return 0
return None
def convert_age(x):
if not isinstance(x, str):
return None
x = x.split(": ")[-1].strip()
try:
return float(x)
except:
return None
def convert_gender(x):
if not isinstance(x, str):
return None
x = x.split(": ")[-1].strip()
# Convert gender to binary (Female=0, Male=1)
if x == "Female":
return 0
elif x == "Male":
return 1
return None
# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features if trait data is available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# The identifiers in format "ILMN_XXXXXXX" are Illumina probe IDs
# These need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. Identify mapping columns
# 'ID' in gene annotation contains ILMN_* identifiers matching gene expression data
# 'Symbol' contains gene symbols to map to
probe_col = 'ID'
gene_col = 'Symbol'
# 2. Get mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
# 3. Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |