File size: 6,158 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE24072"

# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE24072"

# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE24072.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE24072.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE24072.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes - the background indicates HU-133A oligonucleotide arrays (Affymetrix) were used for gene expression profiling
is_gene_available = True

# 2.1 Data Availability
# trait data is in row 2 (glioma grades)
trait_row = 2
# age data is in row 1 
age_row = 1
# gender data is in row 0
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert glioma grade to binary (0 for grade III, 1 for grade IV/V)"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    if "grade iii" in value:
        return 0
    elif "grade iv" in value or "grade v" in value: # Higher grades grouped as 1
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    try:
        age = float(value.split(": ")[-1])
        return age
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0 for female, 1 for male)"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    if value == "female":
        return 0
    elif value == "male":
        return 1
    return None

# 3. Save Metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                      trait=trait,
                                                      trait_row=trait_row,
                                                      convert_trait=convert_trait,
                                                      age_row=age_row,
                                                      convert_age=convert_age, 
                                                      gender_row=gender_row,
                                                      convert_gender=convert_gender)
    
    print("Preview of extracted clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These identifiers are Affymetrix probe IDs (starting with numbers followed by "_at"), not human gene symbols
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))

# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. We see 'ID' holds Affymetrix probe IDs matching the format in gene_data.index,
# and 'Gene Symbol' holds the desired gene symbols
probe_col = 'ID'
gene_col = 'Gene Symbol' 

# 2. Extract mapping between probe IDs and gene symbols 
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)

# 3. Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few gene symbols after mapping:")
print(gene_data.index[:5])
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)