File size: 6,158 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE24072"
# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE24072"
# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE24072.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE24072.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE24072.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes - the background indicates HU-133A oligonucleotide arrays (Affymetrix) were used for gene expression profiling
is_gene_available = True
# 2.1 Data Availability
# trait data is in row 2 (glioma grades)
trait_row = 2
# age data is in row 1
age_row = 1
# gender data is in row 0
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert glioma grade to binary (0 for grade III, 1 for grade IV/V)"""
if pd.isna(value) or not isinstance(value, str):
return None
value = value.split(": ")[-1].lower()
if "grade iii" in value:
return 0
elif "grade iv" in value or "grade v" in value: # Higher grades grouped as 1
return 1
return None
def convert_age(value: str) -> float:
"""Convert age string to float"""
if pd.isna(value) or not isinstance(value, str):
return None
try:
age = float(value.split(": ")[-1])
return age
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0 for female, 1 for male)"""
if pd.isna(value) or not isinstance(value, str):
return None
value = value.split(": ")[-1].lower()
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These identifiers are Affymetrix probe IDs (starting with numbers followed by "_at"), not human gene symbols
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. We see 'ID' holds Affymetrix probe IDs matching the format in gene_data.index,
# and 'Gene Symbol' holds the desired gene symbols
probe_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
# 3. Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few gene symbols after mapping:")
print(gene_data.index[:5])
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data for gliomas. Trait is based on glioma grade (III vs IV/V)."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |