File size: 5,262 Bytes
06befd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE35158"
# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE35158"
# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE35158.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE35158.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE35158.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is gene expression profiling study
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# For trait: WHO grade (row 1) can be used as severity indicator
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
if "who grade" not in x.lower():
return None
try:
grade = x.lower().split(":")[-1].strip()
if "ii" in grade:
return 0 # Lower grade
elif "iii" in grade:
return 1 # Higher grade
return None
except:
return None
convert_age = None
convert_gender = None
# 3. Save Metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols
# They will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. The column "ID" stores probe IDs matching gene expression data
# The column "Symbol" stores gene symbols
prob_col = "ID"
gene_col = "Symbol"
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print first few rows to verify
print("Preview of gene expression data:")
print(preview_df(gene_data))
# Save gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="All subjects are male according to series summary. Age information not available."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |