File size: 5,262 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lower_Grade_Glioma"
cohort = "GSE35158"

# Input paths
in_trait_dir = "../DATA/GEO/Lower_Grade_Glioma"
in_cohort_dir = "../DATA/GEO/Lower_Grade_Glioma/GSE35158"

# Output paths
out_data_file = "./output/preprocess/3/Lower_Grade_Glioma/GSE35158.csv"
out_gene_data_file = "./output/preprocess/3/Lower_Grade_Glioma/gene_data/GSE35158.csv"
out_clinical_data_file = "./output/preprocess/3/Lower_Grade_Glioma/clinical_data/GSE35158.csv"
json_path = "./output/preprocess/3/Lower_Grade_Glioma/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is gene expression profiling study
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# For trait: WHO grade (row 1) can be used as severity indicator 
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    if "who grade" not in x.lower():
        return None
    try:
        grade = x.lower().split(":")[-1].strip()
        if "ii" in grade:
            return 0  # Lower grade
        elif "iii" in grade:
            return 1  # Higher grade 
        return None
    except:
        return None

convert_age = None
convert_gender = None

# 3. Save Metadata
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols
# They will need to be mapped to standard gene symbols for analysis

requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))

# Preview additional rows to check for gene annotations
print("\nPreview of rows 100-105:")
print(preview_df(gene_annotation.iloc[100:105]))
# 1. The column "ID" stores probe IDs matching gene expression data
# The column "Symbol" stores gene symbols
prob_col = "ID"
gene_col = "Symbol"

# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Print first few rows to verify
print("Preview of gene expression data:")
print(preview_df(gene_data))

# Save gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="All subjects are male according to series summary. Age information not available."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)