File size: 5,251 Bytes
a0747da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lung_Cancer"
cohort = "GSE244123"

# Input paths
in_trait_dir = "../DATA/GEO/Lung_Cancer"
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244123"

# Output paths
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244123.csv"
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244123.csv"
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244123.csv"
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Title indicates gene expression data from lung cancer

# 2.1 Data Availability
trait_row = 1  # Can use grade as indicator of lung cancer status, normal vs grades II-IV
age_row = 5    # Age data is available
gender_row = 4 # Gender data is available as Sex

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1].strip()
    if val == 'normal':
        return 0
    elif val in ['II', 'III', 'IV']: 
        return 1
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        return float(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1].strip()
    if val == 'F':
        return 0
    elif val == 'M':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=(trait_row is not None))

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at the IDs like A1BG, A1CF, A2M, etc. 
# These are standard HGNC gene symbols based on nomenclature from HUGO Gene Nomenclature Committee (HGNC)
# No mapping needed as they are already standard human gene symbols
requires_gene_mapping = False
# 1. Normalize gene symbols using NCBI Gene database synonyms
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# Load clinical data from previous steps
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains normalized gene expression data and clinical data."
)

# 6. Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)