File size: 8,134 Bytes
a0747da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lung_Cancer"
cohort = "GSE244645"

# Input paths
in_trait_dir = "../DATA/GEO/Lung_Cancer"
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244645"

# Output paths
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244645.csv"
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244645.csv"
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244645.csv"
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info, this is platelet gene expression data from microarray
is_gene_available = True

# 2. Variable Availability and Row Detection
# trait (cancer state) is in Feature 1 - tumour presence/absence 
trait_row = 1
# age is in Feature 5
age_row = 5 
# gender is in Feature 4
gender_row = 4

# 2. Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert tumor status to binary: 1 for tumor presence, 0 for tumor free"""
    if not value or value == '-':
        return None
    value = value.split(': ')[1].lower()
    if 'tumour presence' in value:
        return 1
    elif 'tumour free' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value or value == '-':
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 1 for male, 0 for female"""
    if not value or value == '-':
        return None
    value = value.split(': ')[1].lower()
    if value == 'male':
        return 1
    elif value == 'female':
        return 0
    return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical data
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers (e.g. TC0100006437.hg.1) appear to be probe IDs from a microarray platform
# rather than standard human gene symbols like BRCA1, TP53 etc.
# They will need to be mapped to official gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
    sample_values = gene_metadata[col].dropna().head().tolist()
    print(f"\n{col}:")
    print(sample_values)

# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    header = []
    for i, line in enumerate(f):
        header.append(line.strip())
        if i >= 10:  # Preview first 10 lines
            break
print('\n'.join(header))
# Create function to extract gene symbols from annotation text
def extract_gene_symbols(text):
    if not isinstance(text, str):
        return []
    symbols = []
    # Get symbols from parentheses after "Homo sapiens"
    matches = re.findall(r'Homo sapiens.*?\((\w+)\)', text)
    symbols.extend(matches)
    # Get symbols from HGNC tags 
    hgnc_matches = re.findall(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\].*?(\w+)', text)
    symbols.extend(hgnc_matches)
    return list(set(symbols))

# Create mapping dataframe by extracting gene symbols from SPOT_ID.1 column
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols)
mapping_data = gene_metadata[['ID', 'Gene']].copy()

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Save genetic data 
gene_data.to_csv(out_gene_data_file)

print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows and columns of mapped data:")
print(gene_data.head().iloc[:, :5])
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation data and load gene data from file
gene_metadata = get_gene_annotation(soft_file)

# Refine extraction of gene symbols
def extract_gene_symbols_from_annotation(text):
    if not isinstance(text, str):
        return []
    # Focus on RefSeq entries which typically have cleaner gene names
    refseq_match = re.search(r'NM_\d+ // RefSeq // Homo sapiens .*? \((\w+)\)', text)
    if refseq_match:
        return [refseq_match.group(1)]  # Return the symbol in parentheses
    return []

# Create mapping dataframe
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols_from_annotation)
mapping_data = gene_metadata[['ID', 'Gene']].copy()

# Re-apply mapping with refined gene symbol extraction
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene expression data 
gene_data.to_csv(out_gene_data_file)

# Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression and clinical data processed and linked using refined gene symbol extraction."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)