File size: 8,134 Bytes
a0747da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Lung_Cancer"
cohort = "GSE244645"
# Input paths
in_trait_dir = "../DATA/GEO/Lung_Cancer"
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE244645"
# Output paths
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE244645.csv"
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE244645.csv"
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE244645.csv"
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info, this is platelet gene expression data from microarray
is_gene_available = True
# 2. Variable Availability and Row Detection
# trait (cancer state) is in Feature 1 - tumour presence/absence
trait_row = 1
# age is in Feature 5
age_row = 5
# gender is in Feature 4
gender_row = 4
# 2. Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tumor status to binary: 1 for tumor presence, 0 for tumor free"""
if not value or value == '-':
return None
value = value.split(': ')[1].lower()
if 'tumour presence' in value:
return 1
elif 'tumour free' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age string to float"""
if not value or value == '-':
return None
try:
return float(value.split(': ')[1])
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary: 1 for male, 0 for female"""
if not value or value == '-':
return None
value = value.split(': ')[1].lower()
if value == 'male':
return 1
elif value == 'female':
return 0
return None
# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers (e.g. TC0100006437.hg.1) appear to be probe IDs from a microarray platform
# rather than standard human gene symbols like BRCA1, TP53 etc.
# They will need to be mapped to official gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
sample_values = gene_metadata[col].dropna().head().tolist()
print(f"\n{col}:")
print(sample_values)
# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
header = []
for i, line in enumerate(f):
header.append(line.strip())
if i >= 10: # Preview first 10 lines
break
print('\n'.join(header))
# Create function to extract gene symbols from annotation text
def extract_gene_symbols(text):
if not isinstance(text, str):
return []
symbols = []
# Get symbols from parentheses after "Homo sapiens"
matches = re.findall(r'Homo sapiens.*?\((\w+)\)', text)
symbols.extend(matches)
# Get symbols from HGNC tags
hgnc_matches = re.findall(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\].*?(\w+)', text)
symbols.extend(hgnc_matches)
return list(set(symbols))
# Create mapping dataframe by extracting gene symbols from SPOT_ID.1 column
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols)
mapping_data = gene_metadata[['ID', 'Gene']].copy()
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Save genetic data
gene_data.to_csv(out_gene_data_file)
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows and columns of mapped data:")
print(gene_data.head().iloc[:, :5])
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation data and load gene data from file
gene_metadata = get_gene_annotation(soft_file)
# Refine extraction of gene symbols
def extract_gene_symbols_from_annotation(text):
if not isinstance(text, str):
return []
# Focus on RefSeq entries which typically have cleaner gene names
refseq_match = re.search(r'NM_\d+ // RefSeq // Homo sapiens .*? \((\w+)\)', text)
if refseq_match:
return [refseq_match.group(1)] # Return the symbol in parentheses
return []
# Create mapping dataframe
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbols_from_annotation)
mapping_data = gene_metadata[['ID', 'Gene']].copy()
# Re-apply mapping with refined gene symbol extraction
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene expression data
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression and clinical data processed and linked using refined gene symbol extraction."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file) |