File size: 7,922 Bytes
a0747da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lung_Cancer"
cohort = "GSE249262"

# Input paths
in_trait_dir = "../DATA/GEO/Lung_Cancer"
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE249262"

# Output paths
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE249262.csv"
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE249262.csv"
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE249262.csv"
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data
is_gene_available = True  # RNA microarray data is mentioned in background

# 2. Clinical Data Analysis
# For trait: Use status field (Feature 3) to determine disease progression
trait_row = 3 
def convert_trait(x):
    if not isinstance(x, str): return None
    val = x.split(': ')[1] if ': ' in x else x
    if 'progression' in val.lower():
        return 1
    elif 'stable' in val.lower():
        return 0
    return None

# Age and gender not available in characteristics
age_row = None
gender_row = None
convert_age = None  
convert_gender = None

# 3. Save Initial Filtering Results
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract Clinical Features 
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical))
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers appear to be numeric probe IDs (e.g. 23064070) rather than standard gene symbols
# Based on the ID format and my knowledge of microarray data, these are likely probe IDs that need 
# mapping to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
    sample_values = gene_metadata[col].dropna().head().tolist()
    print(f"\n{col}:")
    print(sample_values)

# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    header = []
    for i, line in enumerate(f):
        header.append(line.strip())
        if i >= 10:  # Preview first 10 lines
            break
print('\n'.join(header))
# First inspect the platform table structure
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    for line in f:
        if "!Platform_table_begin" in line:
            print("Header:", next(f).strip())
            print("First data row:", next(f).strip())
            break

# Extract platform data with proper column headers
platform_rows = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    platform_found = False
    for line in f:
        if "!Platform_table_begin" in line:
            platform_found = True
            header = next(f).strip().split('\t')
            continue
        if platform_found:
            if "!Platform_table_end" in line:
                break
            row = line.strip().split('\t')
            if len(row) == len(header):
                platform_rows.append(row)

platform_data = pd.DataFrame(platform_rows, columns=header)

print("\nAvailable columns:", platform_data.columns.tolist())

# Create mapping between probe IDs and gene symbols
mapping_df = pd.DataFrame()
id_col = [col for col in platform_data.columns if 'id' in col.lower()][0]
gene_col = [col for col in platform_data.columns if 'gene' in col.lower() or 'symbol' in col.lower()][0]

mapping_df['ID'] = platform_data[id_col] 
mapping_df['Gene'] = platform_data[gene_col]

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# Print info about the mapped data
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
    sample_values = gene_metadata[col].dropna().head().tolist()
    print(f"\n{col}:")
    print(sample_values)

# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    header = []
    for i, line in enumerate(f):
        header.append(line.strip())
        if i >= 10:  # Preview first 10 lines
            break
print('\n'.join(header))
# Since gene mapping failed in a previous step, we'll fall back to using probe IDs
# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Save raw gene expression data with probe IDs
gene_data.to_csv(out_gene_data_file)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains numerical probe-level expression data and clinical data. Gene symbol mapping was not completed."
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)