File size: 5,921 Bytes
a0747da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lung_Cancer"
cohort = "GSE280643"

# Input paths
in_trait_dir = "../DATA/GEO/Lung_Cancer"
in_cohort_dir = "../DATA/GEO/Lung_Cancer/GSE280643"

# Output paths
out_data_file = "./output/preprocess/3/Lung_Cancer/GSE280643.csv"
out_gene_data_file = "./output/preprocess/3/Lung_Cancer/gene_data/GSE280643.csv"
out_clinical_data_file = "./output/preprocess/3/Lung_Cancer/clinical_data/GSE280643.csv"
json_path = "./output/preprocess/3/Lung_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Study of KEAP1/NRF2 signaling indicates gene expression data

# 2.1 Data Availability
trait_row = 0  # Can infer lung cancer status from tissue type
age_row = None  # Age data not available 
gender_row = None  # Gender data not available

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert tissue type to binary lung cancer status"""
    if pd.isna(value):
        return None
    value = value.lower().split(': ')[1] if ': ' in value else value.lower()
    if 'small cell lung cancer' in value:
        return 1
    elif 'normal lung' in value:
        return 0
    return None

def convert_age(value):
    return None  # Not used since age data unavailable

def convert_gender(value):
    return None  # Not used since gender data unavailable

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# In this data, identifiers like '23064070' are numeric IDs
# These are not human gene symbols and need to be mapped to get gene names
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Create a mapping with placeholder gene symbols since we can't find direct mapping
mapping_df = pd.DataFrame({'ID': gene_data.index, 'Gene': 'Gene_' + gene_data.index.astype(str)})

# Apply the mapping to convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(gene_data, mapping_df)

print("\nShape after mapping:", gene_data.shape)
print("\nPreview of converted gene data:")
print(preview_df(gene_data))

# Save the mapped gene expression data
gene_data.to_csv(out_gene_data_file)
# Since gene mapping wasn't successful earlier, we'll work with probe-level data
gene_data = pd.DataFrame(gene_data, dtype=float)  # Keep numeric expression values
gene_data.index = gene_data.index.astype(str)  # Convert index to strings to match sample IDs

# Load clinical data from previous steps
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Save both gene expression data and cohort info
gene_data.to_csv(out_gene_data_file)

# Record cohort information and save if usable
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains numerical probe-level expression data and clinical data. Gene symbol mapping was not successful."
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)