File size: 7,861 Bytes
1f52ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Melanoma"
cohort = "GSE144296"
# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE144296"
# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE144296.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE144296.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE144296.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning mRNA sequencing and gene expression analysis
is_gene_available = True
# 2.1 Data Availability
# Trait (melanoma vs non-melanoma) can be inferred from cell type field (row 1)
trait_row = 1
# Age not available in data
age_row = None
# Gender not available in data
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
"""Convert cell type to binary melanoma indicator"""
if not isinstance(x, str):
return None
x = x.lower().split(': ')[-1]
if 'melanoma' in x:
return 1
elif 'colorectal' in x:
return 0
return None
def convert_age(x):
"""Placeholder for age conversion"""
return None
def convert_gender(x):
"""Placeholder for gender conversion"""
return None
# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview_df(selected_clinical)
# Save clinical features
selected_clinical.to_csv(out_clinical_data_file)
# Extract genetic data matrix with case-insensitive marker
genetic_data = get_genetic_data(matrix_file_path, marker="!series_matrix_table_begin".lower())
# Verify data was loaded
if len(genetic_data.index) == 0:
# Try alternative marker format
genetic_data = get_genetic_data(matrix_file_path, marker="!Series_Matrix_Table_Begin")
if len(genetic_data.index) == 0:
print("Warning: No data was extracted from the matrix file. Please check the matrix file formatting.")
is_gene_available = False
else:
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
if is_gene_available:
genetic_data.to_csv(out_gene_data_file)
# Examine file content before filtering
with gzip.open(soft_file_path, 'rt') as f:
print("\nSample of unfiltered SOFT file content (first 20 lines):")
for i, line in enumerate(f):
if i < 20: # Print more lines to better understand the structure
print(line.strip())
elif i == 20:
print("...")
break
# Try reading the matrix file for gene annotations since the SOFT file seems to lack them
with gzip.open(matrix_file_path, 'rt') as f:
print("\nSample of matrix file content (first 20 lines):")
for i, line in enumerate(f):
if i < 20:
print(line.strip())
elif i == 20:
print("...")
break
# Since we can see the file content now, update the gene metadata extraction
probe_info_found = False
with gzip.open(matrix_file_path, 'rt') as f:
lines = []
for line in f:
if line.startswith('!Platform_organism'):
probe_info_found = True
lines.append(line)
elif probe_info_found and line.startswith('!'):
lines.append(line)
elif probe_info_found and not any(line.startswith(p) for p in ['!', '#', '^']):
break
gene_metadata_text = '\n'.join(lines)
print("\nExtracted probe/gene information:")
print(gene_metadata_text)
# Try reading gene expression data using the library function
genetic_data = get_genetic_data(matrix_file_path)
# Convert index to string type
genetic_data.index = genetic_data.index.astype(str)
# Print sample identifiers for verification
print("\nSample identifiers from genetic data:")
print(list(genetic_data.index)[:5])
# Extract gene mapping info
try:
with gzip.open(matrix_file_path, 'rt') as f:
for line in f:
if '!series_matrix_table_begin' in line.lower():
# Found start of expression data
break
if line.startswith('!Sample_platform_id'):
# Save the platform ID if we find it
platform_line = line.strip()
# For RNA-seq data, create a 1:1 mapping using the original gene identifiers
ids = genetic_data.index.tolist()
annotation_df = pd.DataFrame({
'ID': ids,
'Gene': ids # Use same IDs as gene symbols for now
})
print("\nSample rows from annotation mapping:")
print(annotation_df.head())
# Apply gene mapping using library function
gene_data = apply_gene_mapping(genetic_data, annotation_df)
# Convert gene indices to string before normalization
gene_data.index = gene_data.index.astype(str)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nFinal gene data shape:", gene_data.shape)
print("Sample gene names after normalization:")
print(list(gene_data.index)[:5])
# Save the processed gene data
gene_data.to_csv(out_gene_data_file)
except Exception as e:
print(f"Error during gene mapping: {str(e)}")
# Save genetic data without mapping if error occurs
genetic_data.to_csv(out_gene_data_file)
# Read the entire file first to find the exact line numbers of begin/end markers
with gzip.open(matrix_file_path, 'rt') as f:
lines = f.readlines()
start_idx = None
end_idx = None
for i, line in enumerate(lines):
if '!series_matrix_table_begin' in line.lower():
start_idx = i + 1 # Skip the marker line
elif '!series_matrix_table_end' in line.lower():
end_idx = i
break
genetic_data = None
if start_idx and end_idx:
# Read only the data section
genetic_data = pd.read_csv(io.StringIO(''.join(lines[start_idx:end_idx])),
sep='\t', index_col=0)
# Print results
if genetic_data is not None and len(genetic_data) > 0:
print("\nFirst 20 row IDs:")
print(list(genetic_data.index)[:20])
is_gene_available = True
else:
print("\nWarning: No gene expression data could be extracted")
is_gene_available = False
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
if is_gene_available:
genetic_data.to_csv(out_gene_data_file) |