File size: 8,391 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Melanoma"
cohort = "GSE146264"

# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE146264"

# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE146264.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE146264.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE146264.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene expression data availability
is_gene_available = True  # This is an scRNA-seq dataset for CD8+ T cells

# 2. Clinical data availability and conversion
trait_row = 1  # subjectid indicates disease status (P for psoriasis patients, C for controls)
age_row = None  # Age data not available
gender_row = None  # Gender data not available

def convert_trait(x: str) -> int:
    """Convert subject ID to binary trait status
    P = patient = 1, C = control = 0"""
    if not x or ':' not in x:
        return None
    val = x.split(':')[1].strip()
    if val.startswith('P'):  # Patient
        return 1
    elif val.startswith('C'):  # Control
        return 0
    return None

def convert_age(x: str) -> float:
    """Convert age string to float"""
    return None  # Not used since age_row is None

def convert_gender(x: str) -> int:
    """Convert gender string to binary"""
    return None  # Not used since gender_row is None

# 3. Save initial metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(selected_clinical_df)
    print("Preview of processed clinical data:")
    print(preview)
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# Try different markers for gene data extraction
markers = ["!series_matrix_table_begin", "!series_matrix_table_begin\t", "!dataset_table_begin"]

for marker in markers:
    genetic_data = get_genetic_data(matrix_file_path, marker=marker)
    if not genetic_data.empty:
        break

if genetic_data.empty:
    print("Warning: No genetic data was extracted from the matrix file.")
    is_gene_available = False
else:
    # Print first 20 row IDs to examine data type
    print("First 20 row IDs:")
    print(list(genetic_data.index)[:20])
    is_gene_available = True
    # Only save if data was successfully extracted
    genetic_data.to_csv(out_gene_data_file)

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# Peek at file structure
with gzip.open(matrix_file_path, 'rt') as f:
    print("First 10 lines of matrix file:")
    for i, line in enumerate(f):
        if i < 10:
            print(line.strip())
        else:
            break
            
# First try reading as tab-delimited without seeking markers
try:
    genetic_data = pd.read_csv(matrix_file_path, compression='gzip', sep='\t', comment='!', 
                             low_memory=False)
    print("\nLoaded data shape:", genetic_data.shape)
    if not genetic_data.empty:
        if 'ID_REF' in genetic_data.columns:
            genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'})
        genetic_data = genetic_data.set_index(genetic_data.columns[0])
        # Print first 20 row IDs to examine data type
        print("\nFirst 20 row IDs:")
        print(list(genetic_data.index)[:20])
        genetic_data.to_csv(out_gene_data_file)
        is_gene_available = True
    else:
        print("Warning: No genetic data was extracted from the matrix file.")
        is_gene_available = False
        
except Exception as e:
    print(f"Error extracting genetic data: {str(e)}")
    is_gene_available = False

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
requires_gene_mapping = False
# First peek at SOFT file structure
with gzip.open(soft_file_path, 'rt') as f:
    print("First 20 lines of SOFT file:")
    # Store lines that don't start with ^, !, or #
    data_lines = []
    for i, line in enumerate(f):
        if i < 20:
            print(line.strip()) 
        if not any(line.startswith(p) for p in ['^', '!', '#']):
            data_lines.append(line)
        if len(data_lines) >= 5:  # Get first few data lines
            break

# Manual parsing approach since file structure is non-standard
try:
    with gzip.open(soft_file_path, 'rt') as f:
        data_lines = []
        for line in f:
            if not any(line.startswith(p) for p in ['^', '!', '#']):
                data_lines.append(line)
    
    if data_lines:
        gene_metadata = pd.read_csv(io.StringIO(''.join(data_lines)), sep='\t', 
                                  low_memory=False)
        print("\nLoaded data shape:", gene_metadata.shape)
        # Preview column names and first few values
        preview = preview_df(gene_metadata)
        print("\nGene annotation columns and sample values:")
        print(preview)
    else:
        print("Warning: No gene annotation data was found in the SOFT file.")
        
except Exception as e:
    print(f"Error extracting gene annotation data: {str(e)}")
# Check if we have valid gene expression data
if 'genetic_data' not in locals() or genetic_data.empty:
    print("No valid gene expression data available. Skipping data integration.")
    # Create minimal DataFrame to indicate failure
    minimal_df = pd.DataFrame({'Failed': [1]})
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=False,
        is_trait_available=True,
        is_biased=True,  # Set to True to indicate dataset is unusable
        df=minimal_df,
        note="Failed to extract gene expression data from matrix file."
    )
else:
    # 1. Normalize gene symbols and save gene data
    normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
    normalized_gene_data.to_csv(out_gene_data_file)

    # 2. Link clinical and genetic data  
    clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Judge bias in features and remove biased ones
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True, 
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
    )

    # 6. Save linked data if usable
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)