File size: 8,391 Bytes
1f52ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Melanoma"
cohort = "GSE146264"
# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE146264"
# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE146264.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE146264.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE146264.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene expression data availability
is_gene_available = True # This is an scRNA-seq dataset for CD8+ T cells
# 2. Clinical data availability and conversion
trait_row = 1 # subjectid indicates disease status (P for psoriasis patients, C for controls)
age_row = None # Age data not available
gender_row = None # Gender data not available
def convert_trait(x: str) -> int:
"""Convert subject ID to binary trait status
P = patient = 1, C = control = 0"""
if not x or ':' not in x:
return None
val = x.split(':')[1].strip()
if val.startswith('P'): # Patient
return 1
elif val.startswith('C'): # Control
return 0
return None
def convert_age(x: str) -> float:
"""Convert age string to float"""
return None # Not used since age_row is None
def convert_gender(x: str) -> int:
"""Convert gender string to binary"""
return None # Not used since gender_row is None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical_df)
print("Preview of processed clinical data:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Try different markers for gene data extraction
markers = ["!series_matrix_table_begin", "!series_matrix_table_begin\t", "!dataset_table_begin"]
for marker in markers:
genetic_data = get_genetic_data(matrix_file_path, marker=marker)
if not genetic_data.empty:
break
if genetic_data.empty:
print("Warning: No genetic data was extracted from the matrix file.")
is_gene_available = False
else:
# Print first 20 row IDs to examine data type
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
is_gene_available = True
# Only save if data was successfully extracted
genetic_data.to_csv(out_gene_data_file)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Peek at file structure
with gzip.open(matrix_file_path, 'rt') as f:
print("First 10 lines of matrix file:")
for i, line in enumerate(f):
if i < 10:
print(line.strip())
else:
break
# First try reading as tab-delimited without seeking markers
try:
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', sep='\t', comment='!',
low_memory=False)
print("\nLoaded data shape:", genetic_data.shape)
if not genetic_data.empty:
if 'ID_REF' in genetic_data.columns:
genetic_data = genetic_data.rename(columns={'ID_REF': 'ID'})
genetic_data = genetic_data.set_index(genetic_data.columns[0])
# Print first 20 row IDs to examine data type
print("\nFirst 20 row IDs:")
print(list(genetic_data.index)[:20])
genetic_data.to_csv(out_gene_data_file)
is_gene_available = True
else:
print("Warning: No genetic data was extracted from the matrix file.")
is_gene_available = False
except Exception as e:
print(f"Error extracting genetic data: {str(e)}")
is_gene_available = False
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
requires_gene_mapping = False
# First peek at SOFT file structure
with gzip.open(soft_file_path, 'rt') as f:
print("First 20 lines of SOFT file:")
# Store lines that don't start with ^, !, or #
data_lines = []
for i, line in enumerate(f):
if i < 20:
print(line.strip())
if not any(line.startswith(p) for p in ['^', '!', '#']):
data_lines.append(line)
if len(data_lines) >= 5: # Get first few data lines
break
# Manual parsing approach since file structure is non-standard
try:
with gzip.open(soft_file_path, 'rt') as f:
data_lines = []
for line in f:
if not any(line.startswith(p) for p in ['^', '!', '#']):
data_lines.append(line)
if data_lines:
gene_metadata = pd.read_csv(io.StringIO(''.join(data_lines)), sep='\t',
low_memory=False)
print("\nLoaded data shape:", gene_metadata.shape)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
else:
print("Warning: No gene annotation data was found in the SOFT file.")
except Exception as e:
print(f"Error extracting gene annotation data: {str(e)}")
# Check if we have valid gene expression data
if 'genetic_data' not in locals() or genetic_data.empty:
print("No valid gene expression data available. Skipping data integration.")
# Create minimal DataFrame to indicate failure
minimal_df = pd.DataFrame({'Failed': [1]})
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=True,
is_biased=True, # Set to True to indicate dataset is unusable
df=minimal_df,
note="Failed to extract gene expression data from matrix file."
)
else:
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |