File size: 5,566 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Melanoma"
cohort = "GSE148319"

# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE148319"

# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE148319.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE148319.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE148319.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene expression data availability
# Based on background info, this is a study with gene expression data from tumor xenografts
is_gene_available = True

# 2.1 Data availability
# For trait - can be inferred from cell line info in row 8 
trait_row = 8

# Age & gender not recorded in the sample characteristics
age_row = None  
gender_row = None

# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
    """Convert cell line info to binary melanoma status"""
    if "melanoma" in value.lower():
        return 1
    elif "oral carcinoma" in value.lower():
        return 0
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> int:
    return None

# 3. Save metadata
_ = validate_and_save_cohort_info(is_final=False, 
                                 cohort=cohort,
                                 info_path=json_path,
                                 is_gene_available=is_gene_available,
                                 is_trait_available=trait_row is not None)

# 4. Extract clinical features since trait_row is not None
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age, 
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the processed clinical data
print(preview_df(selected_clinical_df))

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs to examine data type
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])

# After examining the IDs and confirming this is gene expression data:
is_gene_available = True  

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

genetic_data.to_csv(out_gene_data_file)
# The pattern of identifiers shows these are probe IDs from an Affymetrix microarray platform 
# (format: number_at, number_s_at, number_x_at)
# They need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Extract gene mapping from annotation data
# ID column contains probe IDs that match gene expression data
# Gene Symbol column contains standardized human gene symbols
mapping_df = get_gene_mapping(gene_metadata, "ID", "Gene Symbol")

# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)