File size: 5,273 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Melanoma"
cohort = "GSE148949"

# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE148949"

# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE148949.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE148949.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE148949.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Looking at series title and summary, this appears to be a microarray study of breast cancer models
# with gene expression data from Agilent arrays
is_gene_available = True

# 2.1 Data Availability
# From sample characteristics, this dataset contains reference samples from various cell lines
# including melanoma (line 6). However it's just a reference pool, not experimental samples
# so no real trait/phenotype data is available
trait_row = None
age_row = None 
gender_row = None

# 3. Save Metadata
# Only has gene expression data but no trait data for analysis
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=False)

# 4. Skip clinical feature extraction since trait_row is None
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs to examine data type
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])

# After examining the IDs and confirming this is gene expression data:
is_gene_available = True  

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

genetic_data.to_csv(out_gene_data_file)
# Based on my biomedical expertise, looking at the gene identifiers:
# The numeric identifiers (e.g. '41334', '41335' etc.) and '1/2-SBSRNA4' 
# appear to be probe IDs or array feature numbers rather than standard human gene symbols
# Gene symbols would typically be in formats like 'BRAF', 'NRAS', 'TP53'
# Therefore this data requires mapping from probe IDs to gene symbols

requires_gene_mapping = True
# Extract gene annotation data from platform section of SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Check available columns to find probe ID and gene symbol mappings
print("\nGene annotation data shape:", gene_metadata.shape)
print("\nGene annotation columns:")
print(gene_metadata.columns)

# Preview first few rows to understand data structure
print("\nFirst few rows:")
print(gene_metadata.head())

# Look for probe ID patterns in each column
for col in gene_metadata.columns:
    print(f"\nSample values from column '{col}':")
    sample_vals = gene_metadata[col].head(10).tolist()
    print(sample_vals)

# Based on the output, determine map_config
probe_col = None 
gene_col = None

for col in gene_metadata.columns:
    # Compare values to gene expression index
    sample_vals = set(gene_metadata[col].astype(str).head(100))
    genetic_ids = set(list(genetic_data.index)[:100])
    overlap = sample_vals & genetic_ids
    if len(overlap) > 0:
        probe_col = col
        break

# Print mapping column candidates        
print("\nMapping columns found:")
print(f"Probe ID column: {probe_col}")
print(f"Gene Symbol column: {gene_col}")
# The index already contains gene symbols (e.g. A1BG, A1CF) as seen in output
gene_data = genetic_data.copy()

# Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)

print("\nFirst 10 rows of processed gene expression data:")
print(gene_data.head(10))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(genetic_data) 
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# No clinical data available, so can't perform associative analysis
# But provide gene_data for validation and indicate bias
validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # Can't do association analysis without trait data
    df=gene_data,    # Provide gene expression data for validation
    note="Dataset contains only reference samples from cell lines. No trait data available for analysis."
)

# Skip saving linked data since dataset is not usable without trait data