File size: 5,273 Bytes
1f52ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Melanoma"
cohort = "GSE148949"
# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE148949"
# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE148949.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE148949.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE148949.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Looking at series title and summary, this appears to be a microarray study of breast cancer models
# with gene expression data from Agilent arrays
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics, this dataset contains reference samples from various cell lines
# including melanoma (line 6). However it's just a reference pool, not experimental samples
# so no real trait/phenotype data is available
trait_row = None
age_row = None
gender_row = None
# 3. Save Metadata
# Only has gene expression data but no trait data for analysis
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Skip clinical feature extraction since trait_row is None
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs to examine data type
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
# After examining the IDs and confirming this is gene expression data:
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
genetic_data.to_csv(out_gene_data_file)
# Based on my biomedical expertise, looking at the gene identifiers:
# The numeric identifiers (e.g. '41334', '41335' etc.) and '1/2-SBSRNA4'
# appear to be probe IDs or array feature numbers rather than standard human gene symbols
# Gene symbols would typically be in formats like 'BRAF', 'NRAS', 'TP53'
# Therefore this data requires mapping from probe IDs to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from platform section of SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Check available columns to find probe ID and gene symbol mappings
print("\nGene annotation data shape:", gene_metadata.shape)
print("\nGene annotation columns:")
print(gene_metadata.columns)
# Preview first few rows to understand data structure
print("\nFirst few rows:")
print(gene_metadata.head())
# Look for probe ID patterns in each column
for col in gene_metadata.columns:
print(f"\nSample values from column '{col}':")
sample_vals = gene_metadata[col].head(10).tolist()
print(sample_vals)
# Based on the output, determine map_config
probe_col = None
gene_col = None
for col in gene_metadata.columns:
# Compare values to gene expression index
sample_vals = set(gene_metadata[col].astype(str).head(100))
genetic_ids = set(list(genetic_data.index)[:100])
overlap = sample_vals & genetic_ids
if len(overlap) > 0:
probe_col = col
break
# Print mapping column candidates
print("\nMapping columns found:")
print(f"Probe ID column: {probe_col}")
print(f"Gene Symbol column: {gene_col}")
# The index already contains gene symbols (e.g. A1BG, A1CF) as seen in output
gene_data = genetic_data.copy()
# Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nFirst 10 rows of processed gene expression data:")
print(gene_data.head(10))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# No clinical data available, so can't perform associative analysis
# But provide gene_data for validation and indicate bias
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Can't do association analysis without trait data
df=gene_data, # Provide gene expression data for validation
note="Dataset contains only reference samples from cell lines. No trait data available for analysis."
)
# Skip saving linked data since dataset is not usable without trait data |