File size: 5,139 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Melanoma"
cohort = "GSE215868"

# Input paths
in_trait_dir = "../DATA/GEO/Melanoma"
in_cohort_dir = "../DATA/GEO/Melanoma/GSE215868"

# Output paths
out_data_file = "./output/preprocess/3/Melanoma/GSE215868.csv"
out_gene_data_file = "./output/preprocess/3/Melanoma/gene_data/GSE215868.csv"
out_clinical_data_file = "./output/preprocess/3/Melanoma/clinical_data/GSE215868.csv"
json_path = "./output/preprocess/3/Melanoma/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info, this is a gene expression dataset studying melanoma outcomes
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Trait data is available from "long-term benefit" field in key 4
trait_row = 4

# Age data is available in key 0
age_row = 0 

# Gender data not available 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert long-term benefit to binary (0=NO, 1=YES)"""
    if pd.isna(value):
        return None
    value = value.split(": ")[-1]
    if value == "YES":
        return 1
    elif value == "NO":
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to continuous numeric value"""
    if pd.isna(value):
        return None
    try:
        return float(value.split(": ")[-1])
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    """Placeholder function since gender data not available"""
    return None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# List all files to check and get matrix file content
print("All files in directory:")
files = os.listdir(in_cohort_dir) 
for f in files:
    print(f)

# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs (gene/probe identifiers)
print("\nFirst 20 gene/probe IDs:") 
print(genetic_data.index[:20].tolist())

# Since we found standard gene symbols in the matrix file,
# we need to revise the earlier conclusion about methylation data
is_gene_available = True

# Save updated metadata with corrected gene availability info
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# These appear to be standard human gene symbols (HGNC symbols)
# Examples like A2M, ABCF1, AKT1 are well-known human gene symbols
# No mapping needed as they are already in the correct format
requires_gene_mapping = False
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(genetic_data) 
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data from melanoma patients receiving PD-1 immunotherapy, with long-term benefit as outcome."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)