File size: 5,333 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mesothelioma"
cohort = "GSE112154"

# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE112154"

# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE112154.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE112154.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE112154.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)

print("\nClinical Data Structure:")
print(f"Shape: {clinical_data.shape}")
print("\nFirst few rows:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Set pandas to display all rows
pd.set_option('display.max_rows', None)

# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)

# Reset display options 
pd.reset_option('display.max_rows')
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on series title and design, this is gene expression profiling data

# 2.1 Data Availability
# trait can be inferred from sample type - normal vs tumor
trait_row = 0 

# age and gender not available in the data
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if not isinstance(value, str):
        return None
    value = value.lower()
    if 'sample type:' not in value:
        return None
    value = value.split('sample type:')[1].strip()
    # Convert to binary: 0 for normal, 1 for disease (DMPM)
    if 'normal peritoneum' in value:
        return 0
    elif 'dmpm' in value:
        return 1
    return None

def convert_age(value):
    return None  # No age data

def convert_gender(value):
    return None  # No gender data

# 3. Save initial filtering results
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features 
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Clinical Features Preview:", preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review the gene identifiers in the gene expression data
# The identifiers start with "ILMN_" which indicates these are Illumina probe IDs
# These need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

print("\nShape after mapping:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from healthy cells and mesothelioma cell lines, suitable for case-control analysis."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)