File size: 5,679 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mesothelioma"
cohort = "GSE117668"

# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE117668"

# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE117668.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE117668.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE117668.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this is a microarray study of gene expression data
is_gene_available = True

# 2.1 Data Availability
# For trait (mesothelioma status), available in row 1 (diagnosis)
trait_row = 1

# Age and gender not available in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert diagnosis to binary: 1 for mesothelioma, 0 for healthy"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'mesothelioma' in value:
        return 1
    elif 'healthy' in value:
        return 0
    return None

convert_age = None
convert_gender = None

# 3. Save metadata about data availability
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted data
    preview = preview_df(selected_clinical)
    print("Preview of clinical data:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers, we see probe names like "100009613_at", "10000_at", etc
# These are Affymetrix probe IDs, not standard human gene symbols 
# We need to map these probe IDs to gene symbols before further analysis

requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify mapping columns:
# 'ID' in annotation matches probe IDs in expression data (e.g., "100009613_at")
# 'Description' contains gene names/descriptions

# 2. Get gene mapping dataframe
# The ID column already matches between annotation and expression data
mapping_data = gene_annotation[['ID', 'Description']].copy()

# Since Description contains full gene names, extract just the gene symbols
def extract_first_word(text):
    """Extract the first word before any special characters or spaces"""
    if isinstance(text, str):
        return text.split()[0]
    return None

mapping_data['Gene'] = mapping_data['Description'].apply(extract_first_word)
mapping_data = mapping_data[['ID', 'Gene']]

# 3. Convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview results
print("Gene mapping preview:")
print(preview_df(mapping_data))

print("\nGene expression data preview:")
print(preview_df(gene_data))
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from healthy cells and mesothelioma cell lines, suitable for case-control analysis."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)