File size: 5,679 Bytes
1f52ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mesothelioma"
cohort = "GSE117668"
# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE117668"
# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE117668.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE117668.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE117668.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is a microarray study of gene expression data
is_gene_available = True
# 2.1 Data Availability
# For trait (mesothelioma status), available in row 1 (diagnosis)
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert diagnosis to binary: 1 for mesothelioma, 0 for healthy"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'mesothelioma' in value:
return 1
elif 'healthy' in value:
return 0
return None
convert_age = None
convert_gender = None
# 3. Save metadata about data availability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted data
preview = preview_df(selected_clinical)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers, we see probe names like "100009613_at", "10000_at", etc
# These are Affymetrix probe IDs, not standard human gene symbols
# We need to map these probe IDs to gene symbols before further analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify mapping columns:
# 'ID' in annotation matches probe IDs in expression data (e.g., "100009613_at")
# 'Description' contains gene names/descriptions
# 2. Get gene mapping dataframe
# The ID column already matches between annotation and expression data
mapping_data = gene_annotation[['ID', 'Description']].copy()
# Since Description contains full gene names, extract just the gene symbols
def extract_first_word(text):
"""Extract the first word before any special characters or spaces"""
if isinstance(text, str):
return text.split()[0]
return None
mapping_data['Gene'] = mapping_data['Description'].apply(extract_first_word)
mapping_data = mapping_data[['ID', 'Gene']]
# 3. Convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("Gene mapping preview:")
print(preview_df(mapping_data))
print("\nGene expression data preview:")
print(preview_df(gene_data))
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from healthy cells and mesothelioma cell lines, suitable for case-control analysis."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |