File size: 4,850 Bytes
1f52ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mesothelioma"
cohort = "GSE163722"
# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE163722"
# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE163722.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE163722.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE163722.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Study title indicates RERG expression analysis
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# All samples are tumor samples (constant trait), so trait data is not useful
trait_row = None
age_row = None # No age data
gender_row = None # No gender data
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
value = x.split(": ")[-1].strip().lower()
# Since trait data is constant, this function won't be used
return None
def convert_age(x):
# Not needed since age data not available
return None
def convert_gender(x):
# Not needed since gender data not available
return None
# 3. Save Metadata
# is_trait_available is False since trait values are constant
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Clinical Feature Extraction
# Skip since trait_row is None (constant trait values)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Reviewing gene identifiers: they appear to be simple row numbers
# This suggests they are probe IDs rather than gene symbols
# We need to map them to actual gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Looking at the gene identifiers, we need a different method to match them to gene data
# Let's modify the annotation dataframe to add position indices
gene_annotation['position'] = gene_annotation.index.astype(str)
# Extract gene identifier column (position) and gene symbol column, with proper renaming
mapping_data = gene_annotation[['position', 'gene_assignment']]
mapping_data = mapping_data.rename(columns={'position': 'ID', 'gene_assignment': 'Gene'})
# Apply the mapping to get gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols by checking against a dictionary of gene synonyms
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save the processed gene data
gene_data.to_csv(out_gene_data_file)
# Print the shape and preview the result
print("\nFinal gene data shape:", gene_data.shape)
print("\nPreview of final gene data:")
print(preview_df(gene_data))
# Create minimal linked data with constant trait
linked_data = gene_data.T
linked_data['Mesothelioma'] = 1 # all samples are tumor
linked_data = handle_missing_values(linked_data, 'Mesothelioma')
# Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Mesothelioma')
# Final validation
note = "Dataset contains only tumor samples without control samples for comparison."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |