File size: 4,850 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mesothelioma"
cohort = "GSE163722"

# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE163722"

# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE163722.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE163722.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE163722.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Study title indicates RERG expression analysis
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# All samples are tumor samples (constant trait), so trait data is not useful
trait_row = None   
age_row = None    # No age data 
gender_row = None # No gender data

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    value = x.split(": ")[-1].strip().lower()
    # Since trait data is constant, this function won't be used
    return None

def convert_age(x):
    # Not needed since age data not available
    return None

def convert_gender(x):
    # Not needed since gender data not available
    return None

# 3. Save Metadata
# is_trait_available is False since trait values are constant
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=False)

# 4. Clinical Feature Extraction
# Skip since trait_row is None (constant trait values)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Reviewing gene identifiers: they appear to be simple row numbers
# This suggests they are probe IDs rather than gene symbols
# We need to map them to actual gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Looking at the gene identifiers, we need a different method to match them to gene data 
# Let's modify the annotation dataframe to add position indices
gene_annotation['position'] = gene_annotation.index.astype(str)

# Extract gene identifier column (position) and gene symbol column, with proper renaming
mapping_data = gene_annotation[['position', 'gene_assignment']]
mapping_data = mapping_data.rename(columns={'position': 'ID', 'gene_assignment': 'Gene'})

# Apply the mapping to get gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols by checking against a dictionary of gene synonyms
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save the processed gene data
gene_data.to_csv(out_gene_data_file)

# Print the shape and preview the result
print("\nFinal gene data shape:", gene_data.shape)
print("\nPreview of final gene data:")
print(preview_df(gene_data))
# Create minimal linked data with constant trait
linked_data = gene_data.T
linked_data['Mesothelioma'] = 1  # all samples are tumor
linked_data = handle_missing_values(linked_data, 'Mesothelioma')

# Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Mesothelioma')

# Final validation
note = "Dataset contains only tumor samples without control samples for comparison."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)