File size: 5,238 Bytes
1f52ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mesothelioma"
cohort = "GSE68950"

# Input paths
in_trait_dir = "../DATA/GEO/Mesothelioma"
in_cohort_dir = "../DATA/GEO/Mesothelioma/GSE68950"

# Output paths
out_data_file = "./output/preprocess/3/Mesothelioma/GSE68950.csv"
out_gene_data_file = "./output/preprocess/3/Mesothelioma/gene_data/GSE68950.csv"
out_clinical_data_file = "./output/preprocess/3/Mesothelioma/clinical_data/GSE68950.csv"
json_path = "./output/preprocess/3/Mesothelioma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# This dataset contains Affymetrix gene expression data (HT_HG-U133A array)
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Mesothelioma) can be inferred from disease state
trait_row = 1
# Age is not available in the characteristics data  
age_row = None
# Gender is not available in the characteristics data
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert disease state to binary indicating if it's mesothelioma"""
    if value is None or ':' not in value:
        return None
    disease = value.split(': ')[1].lower()
    if 'mesothelioma' in disease:
        return 1
    return 0

def convert_age(value: str) -> float:
    """Convert age value to float"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender value to binary"""
    return None

# 3. Save Metadata
# Conduct initial filtering and save cohort information
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the clinical features
preview = preview_df(clinical_features)
print("Clinical features preview:", preview)

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on the format of gene identifiers (e.g. "1007_s_at", "1053_at"), 
# these appear to be Affymetrix probe IDs rather than standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract gene mapping information from annotation data
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')

# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Print data shapes and preview
print("Original probe data shape:", genetic_data.shape)
print("Gene data shape:", gene_data.shape)
print("\nFirst few rows of gene data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
# Note explains why data was deemed unusable due to severe trait imbalance
note = "Dataset contains gene expression data from cancer cell lines, but mesothelioma samples are too rare (0.75%) for reliable analysis."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=True, # Explicitly setting to True since proportion is <10% and count <5
    df=linked_data,
    note=note
)

# 6. Do not save linked data since trait distribution is biased
if is_usable:
    linked_data.to_csv(out_data_file)