File size: 5,663 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Metabolic_Rate"
cohort = "GSE151683"
# Input paths
in_trait_dir = "../DATA/GEO/Metabolic_Rate"
in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE151683"
# Output paths
out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE151683.csv"
out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE151683.csv"
out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE151683.csv"
json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning DNA microarray analysis and gene expression profiles
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Identify rows for each variable
# Trait (Metabolic Rate) can be inferred from treatment group and time
trait_row = 4 # time weeks used to calculate metabolic rate change
gender_row = 1 # Gender data available
age_row = 2 # Age data available
# 2.2 Conversion functions
def convert_trait(value: str) -> Optional[float]:
"""Convert time weeks to binary - 0 for baseline, 1 for endpoint"""
if not value:
return None
try:
time = float(value.split(': ')[1])
if time == 0:
return 0.0
elif time == 8:
return 1.0
return None
except:
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float"""
if not value:
return None
try:
age = float(value.split(': ')[1])
return age
except:
return None
def convert_gender(value: str) -> Optional[float]:
"""Convert gender to binary - 0 for female, 1 for male"""
if not value:
return None
gender = value.split(': ')[1].lower()
if gender == 'male':
return 1.0
elif gender == 'female':
return 0.0
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview_data = preview_df(selected_clinical)
print("Preview of clinical data:")
print(preview_data)
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These identifiers are Affymetrix probe IDs (ending in "_at" or "_s_at"),
# not standard human gene symbols.
# They need to be mapped to gene symbols for consistency and interpretability.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply mapping to convert probe level data to gene level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save processed gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview results
print("Preview of mapped gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |