File size: 5,034 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Metabolic_Rate"
cohort = "GSE23025"
# Input paths
in_trait_dir = "../DATA/GEO/Metabolic_Rate"
in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE23025"
# Output paths
out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE23025.csv"
out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE23025.csv"
out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE23025.csv"
json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes - this dataset contains gene expression data from Affymetrix HG U133 plus 2.0 Arrays
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 3 # patient status indicates metabolic rate (case vs control)
age_row = None # age data not available
gender_row = None # gender data not available
# 2.2 Data Type Conversion
def convert_trait(x):
"""Convert case/control status to binary"""
if x is None:
return None
val = x.split(': ')[-1].strip().lower()
if val == 'case':
return 1
elif val == 'control':
return 0
return None
convert_age = None # No age data
convert_gender = None # No gender data
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview_df(clinical_features)
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on the gene identifiers in the format "XXXX_at" or "XXXX_s_at",
# these appear to be Affymetrix probe IDs rather than human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping dataframe using ID and Gene Symbol columns
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply gene mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview the converted gene data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |