File size: 5,554 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Metabolic_Rate"
cohort = "GSE89231"
# Input paths
in_trait_dir = "../DATA/GEO/Metabolic_Rate"
in_cohort_dir = "../DATA/GEO/Metabolic_Rate/GSE89231"
# Output paths
out_data_file = "./output/preprocess/3/Metabolic_Rate/GSE89231.csv"
out_gene_data_file = "./output/preprocess/3/Metabolic_Rate/gene_data/GSE89231.csv"
out_clinical_data_file = "./output/preprocess/3/Metabolic_Rate/clinical_data/GSE89231.csv"
json_path = "./output/preprocess/3/Metabolic_Rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, the series investigates gene expression profiling of DLBCL cell lines
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0 # Cell line names contain intrinsic doxorubicin sensitivity information
age_row = None # No age data for cell lines
gender_row = None # No gender data for cell lines
# 2.2 Data Type Conversion
def convert_trait(x):
# Extract cell line name after colon and strip whitespace
cell_line = x.split(':')[1].strip()
# Based on background info, DLBCL cell lines have different intrinsic sensitivity
# Convert to binary: 1 for sensitive, 0 for resistant cell lines
# Reference: https://pubmed.ncbi.nlm.nih.gov/28255297/
sensitive_lines = {'RIVA', 'U2932', 'FARAGE'}
resistant_lines = {'OCI-Ly7', 'SU-DHL-5', 'NU-DHL-1'}
if cell_line in sensitive_lines:
return 1
elif cell_line in resistant_lines:
return 0
return None
convert_age = None # No age data
convert_gender = None # No gender data
# 3. Save Metadata
# Initial filtering - trait data is available (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_result = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview_result)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on observing "_at" or "_s_at" patterns in the identifiers (e.g. "1007_s_at", "1053_at"),
# these appear to be Affymetrix probe IDs rather than gene symbols.
# They require mapping to human gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Choose columns for mapping
# The gene expression data uses probe IDs (e.g., "1007_s_at") which match the 'ID' column
# Gene symbols are stored in the 'Gene Symbol' column
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview mapped gene expression data
print("\nPreview of gene expression data after mapping:")
print(f"Shape: {gene_data.shape}")
print("\nFirst few rows:")
print(gene_data.head())
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains doxorubicin sensitivity data from DLBCL cell lines, suitable for binary analysis."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |