File size: 5,485 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Migraine"
cohort = "GSE67311"
# Input paths
in_trait_dir = "../DATA/GEO/Migraine"
in_cohort_dir = "../DATA/GEO/Migraine/GSE67311"
# Output paths
out_data_file = "./output/preprocess/3/Migraine/GSE67311.csv"
out_gene_data_file = "./output/preprocess/3/Migraine/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/3/Migraine/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/3/Migraine/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From background info, this dataset contains whole blood gene expression data using Affymetrix arrays
is_gene_available = True
# 2.1 Data Availability
# Trait (Migraine) data is available in row 4
trait_row = 4
# Age is not available in the sample characteristics
age_row = None
# Gender is not available in the sample characteristics
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip()
# Convert to binary where Yes=1, No=0, missing=None
if value == 'Yes':
return 1
elif value == 'No':
return 0
return None
def convert_age(value):
return None # Not used since age data not available
def convert_gender(value):
return None # Not used since gender data not available
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the extracted features
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The IDs appear to be identifiers that need mapping - they are numeric codes starting with "789" likely from a microarray
# These are not standard human gene symbols like BRCA1, TP53, etc.
# Based on the numeric format and length, these look like Illumina BeadArray probe IDs
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(expression_df=genetic_data, mapping_df=mapping_data)
# Normalize gene symbols using the NCBI synonym information
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview results
print("Gene-level expression data shape:", gene_data.shape)
print("\nFirst 5 genes and their values across first 3 samples:")
print(gene_data.iloc[:5, :3])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |