File size: 5,854 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mitochondrial_Disorders"
cohort = "GSE22651"
# Input paths
in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders"
in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE22651"
# Output paths
out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE22651.csv"
out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE22651.csv"
out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE22651.csv"
json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# Check gene expression data availability
is_gene_available = True # Based on background info showing Illumina HT12 v3 chips were used
# Analyze trait availability
# From background info, we know this is a Friedreich's ataxia study where control and disease samples are compared
# Looking at the sample characteristics, we can identify disease status from cell lines
# Cell lines 3816.5, 4078.1A2, 4078.1B3 are FRDA patient-derived iPSC lines
trait_row = 0 # Cell line info is in row 0
def convert_trait(x):
if pd.isna(x):
return None
x = x.split(': ')[1]
if any(p in x for p in ['3816.5', '4078.1A2', '4078.1B3']):
return 1 # Patient
return 0 # Control
# Analyze age availability
age_row = 0 # Age info appears in row 0
def convert_age(x):
if pd.isna(x):
return None
try:
age = x.split(': ')[1]
return float(age.split()[0]) # Extract numeric value before 'years'
except:
return None
# Analyze gender availability
gender_row = 0 # Gender info appears in multiple rows
def convert_gender(x):
if pd.isna(x):
return None
x = x.split(': ')[1].lower()
if 'female' in x:
return 0
elif 'male' in x:
return 1
return None
# Validate and save cohort info
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# Extract clinical features if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(selected_clinical_df)
print("Preview of clinical features:")
print(preview)
# Save clinical features
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# ILMN_ prefix indicates these are Illumina probe IDs from BeadArray technology
# They need to be mapped to standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Map probe IDs to gene symbols
# Looking at annotation data, 'ID' contains probe IDs matching ILMN_ format in gene expression data
# 'Symbol' contains gene symbols
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
# Convert probe measurements to gene expression using the mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview result
print("Shape of gene expression data:", gene_data.shape)
print("\nExample gene expression values:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |