File size: 8,819 Bytes
9e2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mitochondrial_Disorders"
cohort = "GSE42986"

# Input paths
in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders"
in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE42986"

# Output paths
out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE42986.csv"
out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE42986.csv"
out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE42986.csv"
json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# Clinical data was loaded in previous step as a dictionary
raw_clinical_data = {
    0: ['tissue: Skeletal muscle', 'tissue: fibroblast cell line'],
    1: ['respiratory chain complex deficiency: No Respiratory Chain Complex Deficiency', 
        'respiratory chain complex deficiency: Complexes I and III',
        'respiratory chain complex deficiency: Complex IV',
        'respiratory chain complex deficiency: Complexes II and III', 
        'respiratory chain complex deficiency: Not measured; 87% mtDNA depletion in muscle',
        'respiratory chain complex deficiency: Complex IV; 70% mtDNA depletion in liver',
        'respiratory chain complex deficiency: Complex IV; 93% mtDNA depletion in muscle',
        'respiratory chain complex deficiency: Complexes I and IV',
        'respiratory chain complex deficiency: Complex I',
        'respiratory chain complex deficiency: Complex I and IV',
        'respiratory chain complex deficiency in muscle: Not Determined',
        'respiratory chain complex deficiency in muscle: Complex I+III Deficiency',
        'respiratory chain complex deficiency in muscle: No Respiratory Chain Complex Deficiency',
        'respiratory chain complex deficiency in muscle: Complexes I and III',
        'respiratory chain complex deficiency in muscle: Complex IV',
        'respiratory chain complex deficiency in muscle: Complexes II and III',
        'respiratory chain complex deficiency in muscle: Complex IV; 93% mtDNA depletion in muscle',
        'respiratory chain complex deficiency in muscle: Complex I'],
    2: ['gender: F', 'gender: M'],
    3: ['age (years): 0.76', 'age (years): 20', 'age (years): 16', 'age (years): 1', 
        'age (years): 0.75', 'age (years): 3', 'age (years): 0.2', 'age (years): 0.9',
        'age (years): 2', 'age (years): 6', 'age (years): 10', 'age (years): 4',
        'age (years): 0.3', 'age (years): 8', 'age (years): 72', 'age (years): 54',
        'age (years): 23', 'age (years): 60', 'age (years): 67', 'age (years): 59',
        'age (years): 11', 'age (years): 46', 'age (years): 42', 'age (years): not obtained',
        'age (years): 5', 'age (years): 30', 'age (years): 36', 'age (years): 39',
        'age (years): 0.1', 'age (years): 0.7'],
    4: ['informatic analysis group: Control Group', 'informatic analysis group: Mito Disease Group',
        'informatic analysis group: Excluded - poor quality', 'informatic analysis group: Excluded - sample outlier']
}

clinical_data = pd.DataFrame()
for key, values in raw_clinical_data.items():
    clinical_data[key] = pd.Series(values)

# Check gene expression data availability
# From background info, we can see this is Affymetrix Human Exon microarray data, which contains gene expression
is_gene_available = True

# Define conversion functions
def convert_trait(value: str) -> int:
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip().lower()
    # Convert to binary - 1 for disease group, 0 for control
    if 'mito disease group' in value:
        return 1
    elif 'control group' in value:
        return 0
    # Exclude poor quality and outlier samples
    return None

def convert_age(value: str) -> float:
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip()
    try:
        # Convert to float if possible
        return float(value)
    except:
        return None

def convert_gender(value: str) -> int:
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip().upper()
    # Convert F->0, M->1
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# Identify row numbers for variables
# trait data is in row 4 (informatic analysis group)
trait_row = 4
# age data is in row 3
age_row = 3  
# gender data is in row 2
gender_row = 2

# Save metadata and validate initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# Extract clinical features if trait data is available
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save clinical data
    clinical_features.to_csv(out_clinical_data_file)
# Cannot properly implement without seeing output from previous step
# containing sample characteristics and background information

# Need these details to:
# 1. Determine if gene expression data exists
# 2. Identify row numbers with clinical variables
# 3. Design appropriate conversion functions
# 4. Make data availability decisions

# Will wait for output from previous step before proceeding
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers ending with "_at", these appear to be probe IDs from an Affymetrix microarray 
# that need to be mapped to human gene symbols

requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
# ID column contains probe IDs (ending with "_at"), Symbol column contains gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply the mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the mapped gene expression data
print("\nFirst few rows of gene expression data after mapping:")
print(gene_data.head())
print("\nShape after mapping:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)