File size: 8,819 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mitochondrial_Disorders"
cohort = "GSE42986"
# Input paths
in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders"
in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE42986"
# Output paths
out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE42986.csv"
out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE42986.csv"
out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE42986.csv"
json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# Clinical data was loaded in previous step as a dictionary
raw_clinical_data = {
0: ['tissue: Skeletal muscle', 'tissue: fibroblast cell line'],
1: ['respiratory chain complex deficiency: No Respiratory Chain Complex Deficiency',
'respiratory chain complex deficiency: Complexes I and III',
'respiratory chain complex deficiency: Complex IV',
'respiratory chain complex deficiency: Complexes II and III',
'respiratory chain complex deficiency: Not measured; 87% mtDNA depletion in muscle',
'respiratory chain complex deficiency: Complex IV; 70% mtDNA depletion in liver',
'respiratory chain complex deficiency: Complex IV; 93% mtDNA depletion in muscle',
'respiratory chain complex deficiency: Complexes I and IV',
'respiratory chain complex deficiency: Complex I',
'respiratory chain complex deficiency: Complex I and IV',
'respiratory chain complex deficiency in muscle: Not Determined',
'respiratory chain complex deficiency in muscle: Complex I+III Deficiency',
'respiratory chain complex deficiency in muscle: No Respiratory Chain Complex Deficiency',
'respiratory chain complex deficiency in muscle: Complexes I and III',
'respiratory chain complex deficiency in muscle: Complex IV',
'respiratory chain complex deficiency in muscle: Complexes II and III',
'respiratory chain complex deficiency in muscle: Complex IV; 93% mtDNA depletion in muscle',
'respiratory chain complex deficiency in muscle: Complex I'],
2: ['gender: F', 'gender: M'],
3: ['age (years): 0.76', 'age (years): 20', 'age (years): 16', 'age (years): 1',
'age (years): 0.75', 'age (years): 3', 'age (years): 0.2', 'age (years): 0.9',
'age (years): 2', 'age (years): 6', 'age (years): 10', 'age (years): 4',
'age (years): 0.3', 'age (years): 8', 'age (years): 72', 'age (years): 54',
'age (years): 23', 'age (years): 60', 'age (years): 67', 'age (years): 59',
'age (years): 11', 'age (years): 46', 'age (years): 42', 'age (years): not obtained',
'age (years): 5', 'age (years): 30', 'age (years): 36', 'age (years): 39',
'age (years): 0.1', 'age (years): 0.7'],
4: ['informatic analysis group: Control Group', 'informatic analysis group: Mito Disease Group',
'informatic analysis group: Excluded - poor quality', 'informatic analysis group: Excluded - sample outlier']
}
clinical_data = pd.DataFrame()
for key, values in raw_clinical_data.items():
clinical_data[key] = pd.Series(values)
# Check gene expression data availability
# From background info, we can see this is Affymetrix Human Exon microarray data, which contains gene expression
is_gene_available = True
# Define conversion functions
def convert_trait(value: str) -> int:
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip().lower()
# Convert to binary - 1 for disease group, 0 for control
if 'mito disease group' in value:
return 1
elif 'control group' in value:
return 0
# Exclude poor quality and outlier samples
return None
def convert_age(value: str) -> float:
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip()
try:
# Convert to float if possible
return float(value)
except:
return None
def convert_gender(value: str) -> int:
# Extract value after colon and strip whitespace
value = value.split(':')[1].strip().upper()
# Convert F->0, M->1
if value == 'F':
return 0
elif value == 'M':
return 1
return None
# Identify row numbers for variables
# trait data is in row 4 (informatic analysis group)
trait_row = 4
# age data is in row 3
age_row = 3
# gender data is in row 2
gender_row = 2
# Save metadata and validate initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# Extract clinical features if trait data is available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Cannot properly implement without seeing output from previous step
# containing sample characteristics and background information
# Need these details to:
# 1. Determine if gene expression data exists
# 2. Identify row numbers with clinical variables
# 3. Design appropriate conversion functions
# 4. Make data availability decisions
# Will wait for output from previous step before proceeding
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers ending with "_at", these appear to be probe IDs from an Affymetrix microarray
# that need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
# ID column contains probe IDs (ending with "_at"), Symbol column contains gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply the mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the mapped gene expression data
print("\nFirst few rows of gene expression data after mapping:")
print(gene_data.head())
print("\nShape after mapping:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |