File size: 5,414 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Mitochondrial_Disorders"
cohort = "GSE65399"
# Input paths
in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders"
in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE65399"
# Output paths
out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE65399.csv"
out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE65399.csv"
out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE65399.csv"
json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Background info shows "Gene expression profiles were obtained using the Illumina HT12v4 Gene Expression BeadArray"
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# From background info, this is a study about FRDA patients
# The differentiation/tissue type in row 0 indicates disease state information
trait_row = 0
age_row = None # Age not available in characteristics
gender_row = None # Gender not available in characteristics
def convert_trait(x):
if x is None or pd.isna(x):
return None
val = x.split(': ')[-1].lower()
# Samples are neural progenitors or fetal tissues
# Neural progenitors are FRDA patient-derived cells
if 'neural progenitors' in val:
return 1 # FRDA patient
elif 'fetal' in val:
return 0 # Control tissue
return None
def convert_age(x):
if x is None or pd.isna(x):
return None
val = x.split(': ')[-1].lower()
try:
return float(val)
except:
return None
def convert_gender(x):
if x is None or pd.isna(x):
return None
val = x.split(': ')[-1].lower()
if 'female' in val or 'f' in val:
return 0
elif 'male' in val or 'm' in val:
return 1
return None
# 3. Save Metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Trait data is available, so extract clinical features
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical data
print("\nPreview of clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers starting with ILMN_ are Illumina probe IDs, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply gene mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |