File size: 5,414 Bytes
9e2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Mitochondrial_Disorders"
cohort = "GSE65399"

# Input paths
in_trait_dir = "../DATA/GEO/Mitochondrial_Disorders"
in_cohort_dir = "../DATA/GEO/Mitochondrial_Disorders/GSE65399"

# Output paths
out_data_file = "./output/preprocess/3/Mitochondrial_Disorders/GSE65399.csv"
out_gene_data_file = "./output/preprocess/3/Mitochondrial_Disorders/gene_data/GSE65399.csv"
out_clinical_data_file = "./output/preprocess/3/Mitochondrial_Disorders/clinical_data/GSE65399.csv"
json_path = "./output/preprocess/3/Mitochondrial_Disorders/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Background info shows "Gene expression profiles were obtained using the Illumina HT12v4 Gene Expression BeadArray"
is_gene_available = True  

# 2. Variable Availability and Data Type Conversion
# From background info, this is a study about FRDA patients
# The differentiation/tissue type in row 0 indicates disease state information
trait_row = 0  
age_row = None # Age not available in characteristics
gender_row = None # Gender not available in characteristics

def convert_trait(x):
    if x is None or pd.isna(x):
        return None
    val = x.split(': ')[-1].lower()
    # Samples are neural progenitors or fetal tissues
    # Neural progenitors are FRDA patient-derived cells
    if 'neural progenitors' in val:
        return 1 # FRDA patient 
    elif 'fetal' in val:
        return 0 # Control tissue
    return None

def convert_age(x):
    if x is None or pd.isna(x):
        return None
    val = x.split(': ')[-1].lower()
    try:
        return float(val)
    except:
        return None

def convert_gender(x):
    if x is None or pd.isna(x):
        return None
    val = x.split(': ')[-1].lower()
    if 'female' in val or 'f' in val:
        return 0
    elif 'male' in val or 'm' in val:
        return 1
    return None

# 3. Save Metadata 
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Trait data is available, so extract clinical features
clinical_df = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted clinical data
print("\nPreview of clinical data:")
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers starting with ILMN_ are Illumina probe IDs, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)