File size: 6,126 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Multiple_sclerosis"
cohort = "GSE131279"
# Input paths
in_trait_dir = "../DATA/GEO/Multiple_sclerosis"
in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE131279"
# Output paths
out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE131279.csv"
out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE131279.csv"
out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE131279.csv"
json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series title and summary, this is a gene expression study in MS brain tissue
is_gene_available = True
# 2.1 Data Availability
# Feature 6 shows tissue type (Grey Matter Lesion vs Grey Matter) - this indicates MS status
trait_row = 6
# Feature 2 shows age at death
age_row = 2
# Feature 1 shows sex (F/M)
gender_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
"""Convert tissue type to binary (0: Normal Grey Matter, 1: Grey Matter Lesion)"""
if not isinstance(x, str):
return None
try:
value = x.split(": ")[1].strip()
if value == "Grey Matter":
return 0
elif value == "Grey Matter Lesion":
return 1
return None
except:
return None
def convert_age(x: str) -> float:
"""Convert age at death to float"""
if not isinstance(x, str):
return None
try:
value = x.split(": ")[1].strip()
return float(value)
except:
return None
def convert_gender(x: str) -> int:
"""Convert sex to binary (0: Female, 1: Male)"""
if not isinstance(x, str):
return None
try:
value = x.split(": ")[1].strip()
if value == "F":
return 0
elif value == "M":
return 1
return None
except:
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the ID format ILMN_*, these are Illumina probe IDs, not gene symbols
# They will need to be mapped to HGNC gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)
# Normalize gene symbols to handle synonyms
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save processed gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and link with genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study comparing Multiple Sclerosis patients to healthy controls using brain tissue transcriptomics."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |