File size: 6,157 Bytes
9e2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Multiple_sclerosis"
cohort = "GSE189788"

# Input paths
in_trait_dir = "../DATA/GEO/Multiple_sclerosis"
in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE189788"

# Output paths
out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE189788.csv"
out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE189788.csv"
out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE189788.csv"
json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background info mentioning Affymetrix HU-133A-2 microarrays, this dataset contains gene expression data
is_gene_available = True

# 2. Variable Availability and Row Identification
trait_row = 0  # "patient diagnosis: multiple sclerosis"
age_row = 2    # "age(years)" data
gender_row = 3 # "gender" data

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    # Binary: Convert MS patients to 1 (we know all are MS patients from background)
    if 'multiple sclerosis' in value.lower():
        return 1
    return None

def convert_age(value: str) -> float:
    # Continuous: Extract age number after colon
    try:
        age = float(value.split(':')[1].strip())
        return age
    except:
        return None

def convert_gender(value: str) -> int:
    # Binary: female=0, male=1
    value = value.split(':')[1].strip().lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Metadata - Initial Filtering
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# These identifiers appear to be Affymetrix probeset IDs rather than gene symbols
# Looking at examples like "1007_s_at", "1053_at", "117_at" - these follow the 
# Affymetrix probe set ID format rather than HGNC gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get gene expression data again
gene_data = get_genetic_data(matrix_file) 

# Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# Apply gene mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Load clinical data and convert trait based on age
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)

# Recalculate trait based on age (POMS: age ≤ 18 [1], AOMS: age > 18 [0])
clinical_data.loc[trait] = (clinical_data.loc['Age'] <= 18).astype(int)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values  
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Pediatric vs Adult Onset Multiple Sclerosis comparison based on blood transcriptome data. Trait defined as POMS (1) vs AOMS (0) using age cutoff of 18 years."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)