File size: 6,414 Bytes
9e2af38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Multiple_sclerosis"
cohort = "GSE203241"
# Input paths
in_trait_dir = "../DATA/GEO/Multiple_sclerosis"
in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE203241"
# Output paths
out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE203241.csv"
out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE203241.csv"
out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE203241.csv"
json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression data availability
# Yes - the study mentions "blood mononuclear cell transcriptome" analysis
is_gene_available = True
# 2.1 Row identification
# For trait: Can infer MS status from sample ordering mentioned in background info
trait_row = 1 # Using age to help identify trait
# Age is in feature 1
age_row = 1
# Gender is in feature 0
gender_row = 0
# 2.2 Conversion functions
def convert_trait(value: str) -> int:
"""Convert trait based on sample ordering from background info
38 MS patients (first 38 samples) followed by 21 controls
Returns 1 for MS, 0 for healthy controls
"""
if ':' not in value:
return None
# Extract sample number from GSM ID to determine trait
try:
sample_num = int(value.split(':')[0].strip())
# First 38 samples are MS patients (1), remaining 21 are controls (0)
return 1 if sample_num <= 38 else 0
except:
return None
def convert_age(value: str) -> float:
"""Convert age value to float
Returns None for unknown values
"""
if ':' not in value:
return None
age = value.split(':')[1].strip()
try:
return float(age)
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary
Returns 0 for female, 1 for male, None for unknown values
"""
if ':' not in value:
return None
gender = value.split(':')[1].strip().lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical feature extraction
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_dict = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:")
print(preview_dict)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on examining gene identifiers like "1007_s_at", "1053_at", etc.
# These are Affymetrix probe IDs from the HG-U133A array, not gene symbols
# Need to be mapped to standard HGNC gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Extract ID and Gene Symbol columns from gene annotation
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and convert trait based on age
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Recalculate trait based on age (POMS: age ≤ 18 [1], AOMS: age > 18 [0])
clinical_data.loc[trait] = (clinical_data.loc['Age'] <= 18).astype(int)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Pediatric vs Adult Onset Multiple Sclerosis comparison based on blood transcriptome data. Trait defined as POMS (1) vs AOMS (0) using age cutoff of 18 years."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |