File size: 6,414 Bytes
9e2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Multiple_sclerosis"
cohort = "GSE203241"

# Input paths
in_trait_dir = "../DATA/GEO/Multiple_sclerosis"
in_cohort_dir = "../DATA/GEO/Multiple_sclerosis/GSE203241"

# Output paths
out_data_file = "./output/preprocess/3/Multiple_sclerosis/GSE203241.csv"
out_gene_data_file = "./output/preprocess/3/Multiple_sclerosis/gene_data/GSE203241.csv"
out_clinical_data_file = "./output/preprocess/3/Multiple_sclerosis/clinical_data/GSE203241.csv"
json_path = "./output/preprocess/3/Multiple_sclerosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene expression data availability
# Yes - the study mentions "blood mononuclear cell transcriptome" analysis
is_gene_available = True

# 2.1 Row identification
# For trait: Can infer MS status from sample ordering mentioned in background info
trait_row = 1  # Using age to help identify trait
# Age is in feature 1
age_row = 1 
# Gender is in feature 0
gender_row = 0

# 2.2 Conversion functions
def convert_trait(value: str) -> int:
    """Convert trait based on sample ordering from background info
    38 MS patients (first 38 samples) followed by 21 controls
    Returns 1 for MS, 0 for healthy controls
    """
    if ':' not in value:
        return None
    # Extract sample number from GSM ID to determine trait
    try:
        sample_num = int(value.split(':')[0].strip())
        # First 38 samples are MS patients (1), remaining 21 are controls (0)
        return 1 if sample_num <= 38 else 0
    except:
        return None

def convert_age(value: str) -> float:
    """Convert age value to float
    Returns None for unknown values
    """
    if ':' not in value:
        return None
    age = value.split(':')[1].strip()
    try:
        return float(age)
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary
    Returns 0 for female, 1 for male, None for unknown values
    """
    if ':' not in value:
        return None
    gender = value.split(':')[1].strip().lower()
    if gender == 'female':
        return 0
    elif gender == 'male':
        return 1
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical feature extraction
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row, 
    convert_gender=convert_gender
)

# Preview the extracted features
preview_dict = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:")
print(preview_dict)

# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on examining gene identifiers like "1007_s_at", "1053_at", etc.
# These are Affymetrix probe IDs from the HG-U133A array, not gene symbols
# Need to be mapped to standard HGNC gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Extract ID and Gene Symbol columns from gene annotation
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Load clinical data and convert trait based on age
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)

# Recalculate trait based on age (POMS: age ≤ 18 [1], AOMS: age > 18 [0])
clinical_data.loc[trait] = (clinical_data.loc['Age'] <= 18).astype(int)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values  
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Pediatric vs Adult Onset Multiple Sclerosis comparison based on blood transcriptome data. Trait defined as POMS (1) vs AOMS (0) using age cutoff of 18 years."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)