File size: 8,985 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Pancreatic_Cancer"
cohort = "GSE130563"

# Input paths
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE130563"

# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE130563.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE130563.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE130563.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - this is a microarray study analyzing transcriptional profiling data
is_gene_available = True

# 2. Variable Availability and Data Types

# 2.1 Data Availability
trait_row = 0  # Diagnosis info in row 0
age_row = 4   # Age info in row 4
gender_row = 1  # Sex info in row 1

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert diagnosis info to binary: 1 for PDAC, 0 for non-cancer controls"""
    if value is None or 'diagnosis:' not in value:
        return None
    diagnosis = value.split('diagnosis:')[1].strip().lower()
    if 'pancreatic ductal adenocarcinoma' in diagnosis:
        return 1
    elif 'chronic pancreatitis' in diagnosis:  # Excluded from analysis per background info
        return None
    else:  # All other diagnoses are non-cancer controls
        return 0

def convert_age(value: str) -> float:
    """Convert age to continuous value"""
    if value is None or 'age:' not in value:
        return None
    try:
        return float(value.split('age:')[1].strip())
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert sex to binary: 0 for female, 1 for male"""
    if value is None or 'Sex:' not in value:
        return None
    sex = value.split('Sex:')[1].strip().upper()
    if sex == 'F':
        return 0
    elif sex == 'M':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The gene identifiers end with '_at', which is a characteristic format of Affymetrix 
# microarray probe IDs rather than standard human gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Let's inspect more of the raw SOFT file to find the annotation data
import gzip
start_line = "!platform_table_begin"
end_line = "!platform_table_end"
found_data = False
print("Sample of annotation data from SOFT file:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    for line in f:
        if start_line in line:
            found_data = True
            # Skip the header line
            next(f)
            # Print first few lines of actual data
            for _ in range(5):
                print(next(f).strip())
            break

# Extract gene annotation data - exclude metadata prefixes and keep data between platform table markers
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation data
print("\nGene annotation columns and example values:")
print(preview_df(gene_annotation))

# Display column names to help identify relevant fields
print("\nAvailable columns:")
print(gene_annotation.columns.tolist())
# Since we can't access the proper gene symbol mapping file, 
# let's look for gene annotation information in the SOFT file
import gzip

# Search for gene symbols in the SOFT file
found_symbols = False
gene_symbols = []

with gzip.open(soft_file, 'rt') as f:
    for line in f:
        # Look for platform table begin marker
        if "!Platform_table_begin" in line:
            headers = next(f).strip().split('\t')
            # Find columns that might contain gene symbol information
            symbol_cols = [i for i, h in enumerate(headers) 
                         if 'symbol' in h.lower() or 'gene' in h.lower()]
            if symbol_cols:
                found_symbols = True
                # Extract gene symbols from identified columns
                for line in f:
                    if "!Platform_table_end" in line:
                        break
                    values = line.strip().split('\t')
                    for col in symbol_cols:
                        if col < len(values):
                            gene_symbols.append(values[col])
            break

if found_symbols and len(gene_symbols) > 0:
    # Create mapping using found gene symbols
    unique_probes = gene_annotation['ID'].unique()
    mapping_df = pd.DataFrame({
        'ID': unique_probes,
        'Gene': gene_symbols[:len(unique_probes)]
    })
else:
    # If no gene symbols found, create temporary mapping using probe IDs
    # This allows pipeline to continue but indicates mapping needs to be updated
    mapping_df = pd.DataFrame({
        'ID': gene_annotation['ID'],
        'Gene': gene_annotation['ID']
    })
    print("WARNING: No gene symbols found. Using probe IDs as temporary mapping.")

# Convert probe-level measurements to gene-level measurements
gene_data = apply_gene_mapping(gene_data, mapping_df)

print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of mapped gene expression data:")
print(gene_data.head())
# 1. Skip normalization and use probe-level data since gene mapping failed
gene_data = get_genetic_data(matrix_file)
print("WARNING: Using probe IDs instead of gene symbols due to failed mapping")
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data and trait
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Debug pre-linking
print("\nPre-linking data shapes:")
print("Clinical data shape:", selected_clinical.shape)
print("Gene data shape:", gene_data.shape)
print("\nClinical data preview:")
print(selected_clinical.head())

# Link the data
gene_data_t = gene_data.T
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data from pancreatic cancer study. Using probe IDs instead of gene symbols."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)