File size: 8,985 Bytes
ba45cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Pancreatic_Cancer"
cohort = "GSE130563"
# Input paths
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE130563"
# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE130563.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE130563.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE130563.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - this is a microarray study analyzing transcriptional profiling data
is_gene_available = True
# 2. Variable Availability and Data Types
# 2.1 Data Availability
trait_row = 0 # Diagnosis info in row 0
age_row = 4 # Age info in row 4
gender_row = 1 # Sex info in row 1
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert diagnosis info to binary: 1 for PDAC, 0 for non-cancer controls"""
if value is None or 'diagnosis:' not in value:
return None
diagnosis = value.split('diagnosis:')[1].strip().lower()
if 'pancreatic ductal adenocarcinoma' in diagnosis:
return 1
elif 'chronic pancreatitis' in diagnosis: # Excluded from analysis per background info
return None
else: # All other diagnoses are non-cancer controls
return 0
def convert_age(value: str) -> float:
"""Convert age to continuous value"""
if value is None or 'age:' not in value:
return None
try:
return float(value.split('age:')[1].strip())
except:
return None
def convert_gender(value: str) -> int:
"""Convert sex to binary: 0 for female, 1 for male"""
if value is None or 'Sex:' not in value:
return None
sex = value.split('Sex:')[1].strip().upper()
if sex == 'F':
return 0
elif sex == 'M':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene identifiers end with '_at', which is a characteristic format of Affymetrix
# microarray probe IDs rather than standard human gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Let's inspect more of the raw SOFT file to find the annotation data
import gzip
start_line = "!platform_table_begin"
end_line = "!platform_table_end"
found_data = False
print("Sample of annotation data from SOFT file:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if start_line in line:
found_data = True
# Skip the header line
next(f)
# Print first few lines of actual data
for _ in range(5):
print(next(f).strip())
break
# Extract gene annotation data - exclude metadata prefixes and keep data between platform table markers
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation data
print("\nGene annotation columns and example values:")
print(preview_df(gene_annotation))
# Display column names to help identify relevant fields
print("\nAvailable columns:")
print(gene_annotation.columns.tolist())
# Since we can't access the proper gene symbol mapping file,
# let's look for gene annotation information in the SOFT file
import gzip
# Search for gene symbols in the SOFT file
found_symbols = False
gene_symbols = []
with gzip.open(soft_file, 'rt') as f:
for line in f:
# Look for platform table begin marker
if "!Platform_table_begin" in line:
headers = next(f).strip().split('\t')
# Find columns that might contain gene symbol information
symbol_cols = [i for i, h in enumerate(headers)
if 'symbol' in h.lower() or 'gene' in h.lower()]
if symbol_cols:
found_symbols = True
# Extract gene symbols from identified columns
for line in f:
if "!Platform_table_end" in line:
break
values = line.strip().split('\t')
for col in symbol_cols:
if col < len(values):
gene_symbols.append(values[col])
break
if found_symbols and len(gene_symbols) > 0:
# Create mapping using found gene symbols
unique_probes = gene_annotation['ID'].unique()
mapping_df = pd.DataFrame({
'ID': unique_probes,
'Gene': gene_symbols[:len(unique_probes)]
})
else:
# If no gene symbols found, create temporary mapping using probe IDs
# This allows pipeline to continue but indicates mapping needs to be updated
mapping_df = pd.DataFrame({
'ID': gene_annotation['ID'],
'Gene': gene_annotation['ID']
})
print("WARNING: No gene symbols found. Using probe IDs as temporary mapping.")
# Convert probe-level measurements to gene-level measurements
gene_data = apply_gene_mapping(gene_data, mapping_df)
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of mapped gene expression data:")
print(gene_data.head())
# 1. Skip normalization and use probe-level data since gene mapping failed
gene_data = get_genetic_data(matrix_file)
print("WARNING: Using probe IDs instead of gene symbols due to failed mapping")
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data and trait
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Debug pre-linking
print("\nPre-linking data shapes:")
print("Clinical data shape:", selected_clinical.shape)
print("Gene data shape:", gene_data.shape)
print("\nClinical data preview:")
print(selected_clinical.head())
# Link the data
gene_data_t = gene_data.T
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data from pancreatic cancer study. Using probe IDs instead of gene symbols."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file) |