File size: 7,227 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Pancreatic_Cancer"
cohort = "GSE183795"

# Input paths
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE183795"

# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE183795.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE183795.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE183795.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the background info, this is a microarray gene expression dataset
is_gene_available = True 

# 2.1 Data Availability
# For trait: Feature 0 contains tissue type info (tumor vs non-tumor)
trait_row = 0

# Age is not available in the data
age_row = None 

# Gender is not available in the data
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert tissue type to binary: 1 for tumor, 0 for non-tumor/normal"""
    if not value or 'tissue:' not in value:
        return None
    value = value.split('tissue:')[1].strip().lower()
    if 'tumor' in value and 'non' not in value:
        return 1
    elif 'non-tumor' in value or 'normal' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age to float"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary"""
    return None

# 3. Save metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age, 
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical data
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers appear to be probe IDs, not gene symbols
# The format is numerical IDs (e.g. 7896748, 7896754) which are probe identifiers 
# from the microarray platform
# These need to be mapped to gene symbols

requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# 1. Observe the IDs used in gene expression data and gene annotation data 
# In gene expression data, we see probe IDs like '7896748', '7896754', etc.
# In gene annotation, these probe IDs are stored in the 'ID' column
# Gene symbols are stored in 'gene_assignment' column

# 2. Extract probe-to-gene mapping 
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# 3. Convert probe-level data to gene-level data using mapping
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Save the processed gene data
gene_data.to_csv(out_gene_data_file)

# Preview the gene_data to verify the conversion
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save normalized gene data
# Remove "-mRNA" suffix from gene symbols before normalization
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data and trait
# First get selected clinical features using the extraction function from previous step
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Debug data structures before linking
print("\nPre-linking data shapes:")
print("Clinical data shape:", selected_clinical.shape)
print("Gene data shape:", gene_data.shape)
print("\nClinical data preview:")
print(selected_clinical.head())

# Transpose gene data to match clinical data orientation
gene_data_t = gene_data.T
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data from pancreatic cancer study. All samples are cancer cases (no controls)."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)