File size: 5,044 Bytes
ba45cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Pancreatic_Cancer"
cohort = "GSE236951"

# Input paths
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer"
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE236951"

# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE236951.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE236951.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE236951.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# The series summary indicates nanostring gene expression analysis of ~700 immune related genes
is_gene_available = True

# 2.1 Data Availability 
# Disease status in row 0, gender in row 2, age in row 3
trait_row = 0
gender_row = 2 
age_row = 3

# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> Optional[int]:
    if not isinstance(x, str):
        return None
    x = x.lower().split(': ')[-1]
    if 'pancreatic' in x:
        return 1
    elif 'colon' in x or 'benign' in x:
        return 0
    return None

def convert_gender(x: str) -> Optional[int]:
    if not isinstance(x, str):
        return None
    x = x.lower().split(': ')[-1]
    if 'female' in x:
        return 0
    elif 'male' in x:
        return 1
    return None

def convert_age(x: str) -> Optional[float]:
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1].split()[0])
    except:
        return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

print("Preview of extracted clinical features:")
print(preview_df(clinical_features))

clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The gene identifiers are already human gene symbols (like A2M, ABCB1, ABL1, etc.)
# No mapping is needed
requires_gene_mapping = False
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data) 
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data and trait
# First get selected clinical features using the extraction function from previous step
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data comparing cervical carcinoma vs normal tissue samples"
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)