File size: 3,480 Bytes
ba45cf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Pancreatic_Cancer"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json"
# 1. Select the relevant subdirectory for pancreatic cancer
subdirectory = 'TCGA_Pancreatic_Cancer_(PAAD)'
cohort_dir = os.path.join(tcga_root_dir, subdirectory)
# 2. Get the file paths
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Identify candidate columns
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
candidate_gender_cols = ["gender"]
# Create preview dictionary directly from the columns list
# Since we cannot access the data files currently, we output the candidate column names
age_preview = {"Selected age columns": candidate_age_cols}
gender_preview = {"Selected gender columns": candidate_gender_cols}
print("Age columns:")
print(age_preview)
print("\nGender columns:")
print(gender_preview)
# Choose appropriate columns for age and gender
age_cols = {'age_at_initial_pathologic_diagnosis', 'days_to_birth'}
gender_cols = {'gender'}
# Set age column - prefer direct age over days_to_birth if available
if 'age_at_initial_pathologic_diagnosis' in age_cols:
age_col = 'age_at_initial_pathologic_diagnosis'
elif 'days_to_birth' in age_cols:
age_col = 'days_to_birth'
else:
age_col = None
# Set gender column
gender_col = 'gender' if 'gender' in gender_cols else None
# Print selected columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
# First create trait labels using sample IDs, then add demographics if available
clinical_features = tcga_select_clinical_features(
clinical_df,
trait=trait,
age_col='age_at_initial_pathologic_diagnosis',
gender_col='gender'
)
# 2. Normalize gene symbols and save
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1)
# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Contains molecular data from tumor and normal samples with patient demographics."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |