File size: 6,011 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Psoriatic_Arthritis"
cohort = "GSE141934"
# Input paths
in_trait_dir = "../DATA/GEO/Psoriatic_Arthritis"
in_cohort_dir = "../DATA/GEO/Psoriatic_Arthritis/GSE141934"
# Output paths
out_data_file = "./output/preprocess/3/Psoriatic_Arthritis/GSE141934.csv"
out_gene_data_file = "./output/preprocess/3/Psoriatic_Arthritis/gene_data/GSE141934.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriatic_Arthritis/clinical_data/GSE141934.csv"
json_path = "./output/preprocess/3/Psoriatic_Arthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# This dataset contains T cell transcriptional data according to background, so gene expression data is available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Row Identification
trait_row = 6 # working_diagnosis contains Psoriatic Arthritis
age_row = 2 # Age data available
gender_row = 1 # Gender data available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
# Binary: 1 for Psoriatic Arthritis, 0 for others
if not value or ':' not in value:
return None
diagnosis = value.split(': ')[1].strip()
if diagnosis == 'Psoriatic Arthritis':
return 1
elif diagnosis in ['Rheumatoid Arthritis', 'Reactive Arthritis', 'Crystal Arthritis',
'Osteoarthritis', 'Non-Inflammatory', 'Undifferentiated Inflammatory Arthritis',
'Other Inflammatory Arthritis', 'Enteropathic Arthritis',
'Undifferentiated Spondylo-Arthropathy', 'Unknown']:
return 0
return None
def convert_age(value: str) -> float:
# Continuous
if not value or ':' not in value:
return None
try:
return float(value.split(': ')[1])
except:
return None
def convert_gender(value: str) -> int:
# Binary: 0 for female, 1 for male
if not value or ':' not in value:
return None
gender = value.split(': ')[1].strip()
if gender == 'F':
return 0
elif gender == 'M':
return 1
return None
# 3. Initial Validation
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers start with "ILMN_", indicating these are Illumina probe IDs
# We need to map these probe IDs to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping data - 'ID' is probe ID, 'Symbol' is gene symbol
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply gene mapping to convert probe-level measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print dimensions after mapping
print("\nShape after mapping:", gene_data.shape)
# Preview first few gene symbols
print("\nFirst few genes:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from CD14+ cells of Psoriatic Arthritis patients and healthy controls."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |